12.9 Z-Transform 387

Dividing the numerator by the denominator we get the following:

1+ az?' + @’z
z—a) z
I — a
a
a _ azz—l

Thus, the quotient is

oc
— y 2 —_
l+az '+a’z77+ =Y a"z7".
n=0

We can easily see that the sequence for which F(z) is the Z-transform is

f,=da"u[n]. ¢

12.9.4 Z-Transform Properties

Analogous to the continuous linear systems, we can define the transfer function of a discrete
linear system as a function of z that relates the Z-tfansform of the input to the Z-transform of
the output. Let {f,}>____ be the input to a discrete linear time-invariant system, and {g,}>=.__

be the output. If F(z) is the Z-transform of the input sequence, and G(z) is the Z-transform
of the output sequence, then these are related to each other by

G(z) = H(z)F(2) (12.116)

and H(z) is the transfer function of the discrete linear time-invariant system.
If the input sequence {f,}> __ had a Z-transform of one, then G(z) would be equal to
H(z). It is an easy matter to find the requisite sequence:

Foy= Y fio=1=f,=1" "=0 (12.117)

0 otherwise.

n=-—-oc

This particular sequence is called the discrete delta function. The response of the system
to the discrete delta function is called the impulse response of the system. Obviously, the
transfer function H(z) is the Z-transform of the impulse response.

12.9.5 Discrete Convolqﬂon

In the continuous time case, the output of the linear time-invariant system was a convolution
of the input with the impulse response. Does the analogy hold in the discrete case? We can
check this out easily by explicitly writing out the Z-transforms in Equation (12.116). For

388 12 TRANSFORMS, SUBBANDS, AND WAVELETS

simplicity let us assume the sequences are all one-sided; that is, they are only nonzero for
nonnegative values of the subscript:

Y ogua "= ha"Y fai {12.118)
n=0 n=0 m=0
Equating like powers of z:
& = hofo
&1 = fohi+ fihy

& = foha+ il + fohy

& = Z‘fmhn-—m'

m=0

Thus, the output sequence is a result of the discrete convolution of the input sequence with
the impulse response.

Most of the discrete linear systems we will be dealing with will be made up of delay
elements, and their input-output relations can be written as constant coefficient difference
equations. For example, for the system shown in Figure 12.13. the input-output relationship
can be written in the form of the following difference equation:

s=afitafi tayfy s +big +bag s (12.119)

The transfer function of this system can be easily found by using the shifting theorem.
The shifting theorem states that if the Z-transform of a sequence {f,} is F(z). then the
Z-transform of the sequence shifted by some integer number of samples 5, is 27" F(2).

Ji] () 0
- &) “
/ \

Delay Delay
fi i ,f) C\‘ d

[' \—*— —}__/ l Sk-1

Delay Delay

(e b'v

Jia = - 82

FIGURE 12. 13 A discrefe system.

12.10 Summary

389

The theorem is easy to prove. Suppose we have a sequence {f,} with Z-transform F(z).

Let us look at the Z-transform of the sequence {f,_, }:

o

f -l
n—ny™~

n=-=oc

Z[{fo-n})

o

f - —MH=1gy
me

m=—oc

oo

— Ty f -
- < Z Sme

m=—oc

— Z_""F(Z).

(12.120)
(12.121)

(12.122)
(12.123)

Assuming G(z) is the Z-transform of {g,} and F(z) is the Z-transform of {f,}. we can take

the Z-transform of both sides of the difference equation (12.119):

G(2) = ayF(z) + a,27 ' F(2) + a2 F(2) + 5,27 G(2) + b2 G (2)

from which we get the relationship between G(z) and F(z) as

— -2
ay+a,z” ' +a,z7?

G(o)= F(z).
(@) 1=—bz7' = byz7? @)
By definition the transfer function H(z) is therefore
G(z2)
H(z) =
F(z)
_agtar ta”?
T o l=bz = by

12.10 Summary

(12.124)

(12.125)

(12.126)

(12.127)

In this chapter we have reviewed some of the mathematical tools we will be using throughout
the remainder of this book. We started with a review of vector space concepts, followed by a
look at a number of ways we can represent a signal, including the Fourier series, the Fourier
transform, the discrete Fourier series, the discrete Fourier transtorm, and the Z-transform.
We also looked at the operation of sampling and the conditions necessary for the recovery

of the continuous representation of the signal from its samples.

1. There are a large number of books that provide a much more detailed look at the
concepts described in this chapter. A nice one is Signal Processing and Linear Systems,

by B.P. Lathi [177].

2. For a thorough treatment of the fast Fourier transform (FFT), see Numerical Recipes
in C, by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.J. Flannery [178].

390

12.

"

12 TRANSFORMS, SUBBANDS, AND WAVELETS

11 Projects and Problems
Let X be a set of N linearly independent vectors, and let V be the collection of vectors
obtained using all linear combinations of the vectors in X.

{a) Show that given any two vectors in V, the sum of these vectors is also an element
of V.

{b) Show that V contains an additive identity.

{e) Show that for every x in V, there exists a (—x) in V such that their sum is the
additive identity.

Prove Parseval’s theorem for the Fourier transform.
Prove the modulation property of the Fourier transform.
Prove the convolution theorem for the Fourier transform.

Show that the Fourier transform of a train of impulses in the time domain is a train
of impulses in the frequency domain:

(3]

3'[i 8(t-n7’)}:0‘0 i 3(w - noy,) 00=-—T3. {12.128)

Find the Z-transform for the following sequences:

{a) h, =2"u[n], where u[n] is the unit step function.
(b) h,=(n*—n)3"uln].

{e} h,=(n27"4(0.6)")u[n].

Given the following input-output relationship:

Y, =0.6y, ,+0.5x,+0.2x

n-1
{a) Find the transfer function H(z).

(b} Find the impulse response {4,).

Find the inverse Z-transform of the following:

la) H(z) =5

(b) H(z) = 5.

() H)= =

Transform Coding

13.1 Overview

n this chapter we will describe a technique in which the source output is
decomposed, or transformed, into components that are then coded according
to their individual characteristics. We will then look at a number of different
transforms, including the popular discrete cosine transform, and discuss the
issues of quantization and coding of the transformed coefficients. This chapter
concludes with a description of the baseline sequential JPEG image-coding algorithm and
some of the issues involved with transform coding of audio signals.

13.2 Introduction

In the previous chapter we developed a number of tools that can be used to transform a
given sequence into different representations. If we take a sequence of inputs and transform
them into another sequence in which most of the information is contained in only a few
elements, we can then encode and transmit those elements, along with their location in
the new sequence, resulting in data compression. In our discussion, we will use the terms
“variance” and “information™ interchangeably. The justification for this is shown in the
results in Chapter 7. For example, recall that for a Gaussian source the differential entropy is
given as %log 2mea?. Thus, an increase in the variance results in an increase in the entropy,
which is a measure of the information contained in the source output.
To begin our discussion of transform coding, consider the following example.

392 13 TRANSFORM CODING

Example 13.2.1:

Let’s revisit Example 8.5.1. In Example 8.5.1, we studied the encoding of the output of a
source that consisted of a sequence of pairs of numbers. Each pair of numbers corresponds
to the height and weight of an individual. In particular, let’s look at the sequence of outputs
shown in Table 13.1. '

If we look at the height and weight as the coordinates of a point in two-dimensional
space, the sequence can be shown graphically as in Figure 13.1. Notice that the output

TABLE 13.1 Original sequence.

Height Weight

65 170

75 188

60 150

70 170

56 130

80 203

68 160

50 110

40 80

50 153

69 148

62 140

76 164

64 120
200 .
190 —

[]
180 —
170 .
160 — . L4
150 .
.
140 — .
130 — .
- 120 .
110 - .
100 —
90 —
80 1 .
L] T] T I T I ¥] 1 I T l L] 1 -

FIGURE 13. 1 Source output sequence.

13.2 Introduction 393

values tend to cluster around the line y = 2.5x. We can rotate this set of values by the
transformation

6 = Ax (13.1)

where X is the two-dimensional source output vector

xz[%] (13.2)

X

X, corresponds to height and x, corresponds to weight, A is the rotation matrix

_ | cosd sind
A_[—sincb cosd)] (13.3)
¢ is the angle between the x-axis and the y = 2.5x line, and
| %
0= [6,] (13.4)

is the rotated or transformed set of values. For this particular case the matrix A is

A_[0.37139068 0.92847669]

—0.92847669 0.37139068 (13.5)

and the transformed sequence (rounded to the nearest integer) is shown in Table 13.2. (For a
brief review of matrix concepts, see Appendix B.)

Notice that for each pair of values, almost all the energy is compacted into the first
element of the pair, while the second element of the pair is significantly smaller. If we plot
this sequence in pairs, we get the result shown in Figure 13.2. Note that we have rotated the
original values by an angle of approximately 68 degrees (arctan2.5).

YABLE 13.2 Transformed sequence.

First Coordinate Second Coordinate
182 3
202 0
162 0
184 -2
141 —4
218 1
174 -4
121 —6

90 -7
161 10
163 -9
153 -6
181 -9

135 -15

394 13 TRANSFORM CODING

10 — .
5 - .
Py o [
I I ! | T [I | 1 T T g T 1 | I !
_s5 80 90 100 110 130 130 140 159 160 170®180 190 200 210 220 230
°

~10 —

FIGURE 13. 2 The transformed sequence.

Suppose we set all the second elements of the transformation to zero, that is, the second
coordinates of the sequence shown in Table 13.2. This reduces the number of elements that
need to be encoded by half. What is the effect of throwing away half the el2ments of the
sequence? We can find that out by taking the inverse transform of the reduced sequence.
The inverse transform consists of reversing the rotation. We can do this by multiplying the
blocks of two of the transformed sequences with the second element in each block set to
zero with the matrix

= cosd —sind
A z[sind) cosd):l (13.9)

and obtain the reconstructed sequence shown in Table 13.3. Comparing this to the original
sequence in Table 13.1, we see that, even though we transmitted only half the number of
elements present in the original sequence, this “reconstructed” sequence is very close to the
original. The reason there is so little error introduced in the sequence {x,} is that for this

TABLE 13.3 Reconstructed sequence.

Height Weight
68 169
75 188
60 150
68 171
53 131
81 203
65 162
45 112
34 84
60 150
61 151
57 142
67 168

50 125

13.2 Introduction 395

particular transformation the error introduced into the {x,} sequence is equal to the error
introduced into the {6, } sequence. That is. ’

N-1 N—1
Z(-‘z_j'i)z = Z(ei_ei)z “3-7)
i=0 =0
where {x,} is the reconstructed sequence, and
- 6, i=0.2.4,...
b= " (13.8)

' 0 otherwise

(see Problem 1). The error introduced in the {6,} sequence is the sum of squares of the 6,s
that are set to zero. The magnitudes of these elements are quite small, and therefore the total
error introduced into the reconstructed sequence is quite small also. ¢

We could reduce the number of samples we needed to code because most of the infor-
mation contained in each pair of values was put into one element of each pair. As the other
element of the pair contained very little information, we could discard it without a significant
effect on the fidelity of the reconstructed sequence. The transform in this case acted on pairs
of values; therefore. the maximum reduction in the number of significant samples was a
factor of two. We can extend this idea to longer blocks of data. By compacting most of the
information in a source output sequence into a few elements of the transformed sequence
using a reversible transform, and then discarding the elements of the sequence that do not
contain much information, we can get a large amount of compression. This is the basic idea
behind transform coding.

In Example 13.2.1 we have presented a geometric view of the transform process. We
can also examine the transform process in terms of the changes in statistics between the
original and transformed sequences. It can be shown that we can get the maximum amount
of compaction if we use a transform that decorrelates the input sequence; that is, the sample-
to-sample correlation of the transformed sequence is zero. The first transform to provide
decorrelation for discrete data was presented by Hotelling [179] in the Journal of Educational
Psvchology in 1933. He called his approach the method of principal components. The
analogous transform for continuous functions was obtained by Karhunen [180] and Loéve
[181]. This decorrelation approach was first utilized for compression, in what we now call
transform coding, by Kramer and Mathews [182], and Huang and Schultheiss [183].

Transform coding consists of three steps. First, the data sequence {x,} is divided into
blocks of size N. Each block is mapped into a transform sequence {6,} using a reversible
mapping in a manner similar to that described in Example 13.2.1. As shown in the example,
different elements of each block of the transformed sequence generally have different statis-
tical properties. In Example 13.2.1, most of the energy of the block of two input values was
contained in the first element of the block of two transformed values, while very little of
the energy was contained in the second element. This meant that the second element of each
block of the transformed sequence would have a small magnitude, while the magnitude of
the first element could vary considerably depending on the magnitude of the elements in the
input block. The second step consists of quantizing the transformed sequence. The quantiza-
tion strategy used will depend on three main factors: the desired average bit rate, the statistics

396 13 TRANSFORM CODING

of the various elements of the transformed sequence, and the effect of distortion in the trans-
formed coefficients on the reconstructed sequence. In Example 13.2.1, we could take all the
bits available to us and use them to quantize the first coefficient. In more complex situations,
the strategy used may be very different. In fact, we may use different techniques, such as
differential encoding and vector quantization [118], to encode the different coefficients.

Finally, the quantized value needs to be encoded using some binary encoding technique.
The binary coding may be as simple as using a fixed-length code or as complex as a
combination of run-length coding and Huffman or arithmetic coding. We will see an example
of the latter when we describe the JPEG algorithm.

The various quantization and binary coding techniques have been described at some
length in previous chapters, so we will spend the next section describing various transforms.
We will then discuss quantization and coding strategies in the context of these transforms.

13.3 The Transform

All the transforms we deal with will be linear transforms; that is, we can get the sequence
{8,} from the sequence {x,} as

N-1
6n= inan.i' (]39)
i=0

This is referred to as the forward transform. For the transforms that we will be considering,
a major difference between the transformed sequence {6,} and the original sequence {x,}
is that the characteristics of the elements of the 6 sequence are determined by their position
within the sequence. For example, in Example 13.2.1 the first elcment of each pair of the
transformed sequence was more likely to have a large magnitude compared to the second
element. In general, we cannot make such statements about the source output sequence
{x,}. A measure of the differing characteristics of the different elements of the transformed
sequence {0,} is the variance o2 of each element. These variances will strongly influence
how we encode the transformed sequence. The size of the block N is dictated by practical
considerations. In general, the complexity of the transform grows more than linearly with N.
Therefore, beyond a certain value of’ N, the computational costs overwhelm any marginal
improvements that might be obtained by increasing N. Furthermore, in most real sources
the statistical characteristics of the source output can change abruptly. For example, when
we go from a silence period to a voiced period in speech, the statistics change drastically.
Similarly, in images, the statistical characteristics of a smooth 1egion of the image can be
very different from the statistical characteristics of a busy region of the image. If N is
large, the probability that the statistical characteristics change significantly within a block
increases. This generally results in a larger number of the transform coefficients with large
values, which in turn leads to a reduction in the compression ratio.

The original sequence {x,} can be recovered from the transformed sequence {8,} via the
inverse transform:

N-1
x,=30b,, (13.10)
i=0

13.3 The Transform 397

The transforms can be written in matrix form as

0 = Ax (13.11)
x = B0 (13.12)

where A and B are N x N matrices and the (i, j)th element of the matrices is given by

(A, = a,; (13.13)

ij

(B, = b, (13.14)

L)

The forward and inverse transform matrices A and B are inverses of each other; that is,
AB = BA =1, where I is the identity matrix.

Equations (13.9) and (13.10) deal with the transform coding of one-dimensional
sequences, such as sampled speech and audio sequences. However, transform coding is one
of the most popular methods used for image compression. In order to take advantage of
the two-dimensional nature of dependencies in images, we need to look at two-dimensional
transforms.

Let X; ; be the (i, j)th pixel in an image. A general linear two-dimensional transform for
a block of size N x N is given as

N-1N-1

=2 2 Xij@iju (13.15)

i=0 j=0

All two-dimensional transforms in use today are separable transforms; that is, we can take
the transform of a two-dimensional block by first taking the transform along one dimension,
then repeating the operation along the other direction. In terms of matrices, this involves first
taking the (onc-dimensional) transform of the rows, and then taking the column-by-column
transform of the resulting matrix. We can also reverse the order of the operations, first taking
the transform of the columns, and then taking the row-by-row transform of the resulting
matrix. The transform operation can be represented as

N-1N-1
0= a,.X; a;; (13.16)
=0 j=0
which in matrix terminology would be given by
0 =AXA". (13.17)
The inverse transform is given as

X =BOB’. (13.18)

All the transforms we deal with will be orthonormal transforms. An orthonormal trans-
form has the property that the inverse of the transform matrix is simply its transpose because
the rows of the transform matrix form an orthonormal basis set: .

B=A"=A". (13.19)

398 13 TRANSFORM CODING

For an orthonormal transform. the inverse transform will be given as
X = ATOA. (13.20)

Orthonormal transforms are energy preserving; that is, the sum of the squares of the
transformed sequence is the same as the sum of the squares of the original sequence. We
can see this most easily in the case of the one-dimensional transform:

N-1
2.6 =078 (13.21)
i=0
= (Ax)"Ax (13.22)
= x"ATAx. (13.23)

If A is an orthonormal transform, ATA = A~'A =1, then

x"ATAx = x"x (13.24)
N-1
=y (13.25)
n=0
and
N—1 N-1
Yo=Y 2 (13.26)
i=0 n=0

The efficacy of a transform depends on how much energy compaction is provided by the
transform. One way of measuring the amount of energy compaction afforded by a particular
orthonormal transform is to take a ratio of the arithmetic mean of the variances of the
transform coefficient to their geometric means [123]. This ratio is also referred to as the
transform coding gain G: '

Gre = 22—+ (13.27)
(ITiZy o7)¥
where o7 is the variance of the ith coefficient 6,.

Transforms can be interpreted in several ways. We have already mentioned a geometric
interpretation and a statistical interpretation. We can also interpret them as a decomposition
of the signal in terms of a basis set. For example. suppose we have a two-dimensional
orthonormal transform A. The inverse transform can be written as

Xo — Agy A 90 — Ay ap]
l:xl] |:(101 ClnjH:e]i| en[a()l:|+91[a”] (328)

We can see that the transformed values are actually the coefficients of an expansion of the
input sequence in terms of the rows of the transform matrix. The rows of the transform
matrix are often referred to as the basis vectors for the transform because they form an
orthonormal basis set, and the elements of the transformed sequence are often called the
transform coefficients. By characterizing the basis vectors in physical terms we can get a
physical interpretation of the transform coefficients.

13.3 The Transform 399

Example 13.3.1:

Consider the following transform matrix:

A=%l:i _11} (13.29)

We can verity that this is indeed an orthonormal transform.

Notice that the first row of the matrix would correspond to a “low-pass™ signal (no change
from one component to the next), while the second row would correspond to a “high-pass™
signal. Thus, if we tried to express a sequence in which each element has the same value
in terms of these two rows. the second coefficient should be zero. Suppose the original

sequence is (a, o). Then
8, 1 [11 o V2a
LRI HE .

The “low-pass™ coefficient has a value of +/2a, while the “high-pass™ coefficient has a
value of 0. The “low-pass” and “high-pass” coefficients are generally referred to as the
low-frequency and high-frequency coefficients.

Let us take two sequences in which the components are not the same and the degree of
variation is different. Consider the two sequences (3, 1) and (3, —1). In the first sequence
the second element differs from the first by 2; in the second sequence. the magnitude of the
difference is 4. We could say that the second sequence is more “high pass™ than the first
sequence. The transform coefficients for the two sequences are (2+/2. v/2) and (+/2.2+/2),
respectively. Notice that the high-frequency coefficient for the sequence in which we see
a larger change is twice that of the high-frequency coefficient for the scquence with less
change. Thus. the two coefficients do seem to behave like the outputs of a low-pass filter
and a high-pass filter.

Finally. notice that in every case the sum of the squares of the original sequence is the
same as the sum of the squares of the transform coefficients; that is. the transform is energy
preserving. as it must be. since A is orthonormal. ¢

We can interpret one-dimensional transforms as an expansion in terms of the rows of the
transform matrix. Similarly, we can interpret two-dimensional transforms as expansions in
terms of matrices that are formed by the outer product of the rows of the transtorm matrix.
Recall that the outer product is given by

XoXo XXy 0 XoXy_y
XX X|X] 0 X)Xy
ATRY 1% XN
xx! =))) (13.31)
AR Y X B TR VA B S

To see this more clearly. let us use the transform introduced in Example 13.3.1 for a
two-dimensional transform.

400 13 TRANSFORM CODING

Example 13.3.2:

For an N x N transform A, let o, ; be the outer product of the ith and jth rows:

[Ao
aj
a; = : [aja; - a_, | (13.32)
L din—1
i AipQjo Qpd;; -~ Qpdjy_)
_ a;a;, apa; - a;d;y_, (13.33)
L Ain—1@Qjo Ain1Gj1 - AN Qi)
For the transform of Example 13.3.1, the outer products are
1111 111 -1
ao'o—i[ll]ao"—f[l—ljl (13.34)
11 171 -1

From (13.20), the inverse transform is given by

X Xor | _ 11 I:H:eooﬁo‘]rl l:l 13.36
[xl() xll] 2[] -1 e]() Bll l_l -1 (’)

_ ll:em+901+610+911 el)0—901+9|0_9”} (]337)
2 [B0+ 86 —810— 81 O =80, —0,0+6,,
= B0+ Bg1091 + 8100 o +0,10y (13.38)

The transform values 6;; can be viewed as the coefficients of the expansion of x in terms of
the matrices o, ;. The matrices o, ; are known as the basis matrices.

For historical reasons, the coefficient 6,, corresponding to the basis matrix o g, is called
the DC coefficient, while the coefficients corresponding to the other basis matrices are called
AC coefficients. DC stands for direct current, which is current that does not change with
time. AC stands for alternating current, which does change with time. Notice that all the
elements of the basis matrix oy are the same, hence the DC designation. ¢

In the following section we will look at some of the variety of transforms available to
us, then at some of the issues involved in quantization and coding. Finally, we will describe
in detail two applications, one for image coding and one for audio coding.

13.4 Transforms of Interest

In Example 13.2.1, we constructed a transform that was specific to the data. In practice,
it is generally not feasible to construct a transform for the specific situation, for several

13.4 Transforms of Interest 401

reasons. Unless the characteristics of the source output are stationary over a long interval,
the transform needs to be recomputed often, and it is generally burdensome to compute a
transform for every different set of data. Furthermore, the overhead required to transmit
the transform itself might negate any compression gains. Both of these problems become
especially acute when the size of the transform is large. However, there are times when
we want to find out the best we can do with transform coding. In these situations, we
can use data-dependent transforms to obtain an idea of the best performance available. The
best-known data-dependent transform is the discrete Karhunen-Loéve transform (KLT). We
will describe this transform in the next section.

13.4.1 Karhunen-Loéve Transform

The rows of the discrete Karhunen-Loéve transform [184], also known as the Hotelling
transform, consist of the eigenvectors of the autocorrelation matrix. The autocorrelation
matrix for a random process X is a matrix whose (i, j)th element [R]; ; 1s given by

[R];, = E[X, X,] (13.39)

We can show [123] that a transform constructed in this manner will minimize the geometric
mean of the variance of the transform coefficients. Hence, the Karhunen-Loéve transform
provides the largest transform coding gain of any transform coding method.

If the source output being compressed is nonstationary, the autocorrelation function will
change with time. Thus. the autocorrelation matrix will change with time, and the KLT will
have to be recomputed. For a transform of any reasonable size, this is a significant amount
of computation. Furthermore. as the autocorrelation is computed based on the source output,
it is not available to the receiver. Therefore, either the autocorrelation or the transform itself
has to be sent to the receiver. The overhead can be significant and remove any advantages
to using the optimum transform. However, in applications where the statistics change slowly
and the transform size can be kept small, the KLT can be of practical use [185].

Example 13.4.1:

Let us see how to obtain the KLT transform of size two for an arbitrary input sequence. The
autocorrelation matrix of size two for a stationary process is

R“(O) er(l)
"= [Ru(l) Rn(O)] (13.40)

Solving the equation |A\I—-R| =0, we get the two eigenvalues A, = R, . (0) + R, (1), and
A, =R, (0)— R, (1). The corresponding eigenvectors are

vlz[z] vzz[_BB] (13.41)

402 13 TRANSFORM CODING

where « and B are arbitrary constants. If we now impose the orthonormality condition, which
requires the vectors to have a magnitude of 1, we get

a:B:—l—

V2
and the transform matrix K is
1 11
Kzﬁ[]_l} (13.42)

Notice that this matrix is not dependent on the values of R (0) and R, (1). This is ¢nly true
of the 2 x 2 KLT. The transform matrices of higher order are functions of the autocorrelation
values. ¢

Although the Karhunen-Loéve transform maximizes the transtorm coding gain as defined
by (13.27). it is not practical in most circumstances. Therefore. we need transforms that do
not depend on the data being transformed. We describe some of the more popular transforms
in the following sections.

13.4.2 Discrete Cosine Transform

The discrete cosine transform (DCT) gets its name from the fact that the rows of the N x N
transform matrix C are obtained as a function of cosines.

@ \/gcostlf;;)/ﬂ i=0,j=0,1..... N -1
o \/%COSM i=1.2.....N=1,j=0,1,....N—1.

(13.43)

2N -

The rows of the transform matrix are shown in graphical form in Figure 13.3. Notice how
the amount of variation increases as we progress down the rows; that is, the frequency of
the rows increases as we go from top to bottom.

The outer products of the rows are shown in Figure 13.4. Notice that the basis matri-
ces show increased variation as we go from the top-left matrix, corresponding to the 6,
coefficient, to the bottom-right matrix, corresponding to the 8 y_,,y_,, coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned in
Chapter 11, and in fact can be obtained from the DFT. However, in terms of compression,
the DCT performs better than the DFT.

To see why, recall that when we find the Fourier coefficients for a sequence of length N,
we assume that the sequence is periodic with period N. If the original sequence is as shown
in Figure 13.5a, the DFT assumes that the sequence outside the interval of interest behaves
in the manner shown in Figure 13.5b. This introduces sharp discontinuities, at the beginning
and the end of the sequence. In order to represent these sharp discontinuities, the DFT
needs nonzero coefficients for the high-frequency components. Because these components
are needed only at the two endpoints of the sequence, their effect needs to be canceled out at
other points in the sequence. Thus, the DFT adjusts other coefficients accordingly. When we
discard the high-frequency coefficients (which should not have been there anywayv) auring

13.4 Transforms of Interest 403

i Tl |
1

L.
T

FIGURE 13. 3 Basis set for the discrete cosine transform. The numbers in the
circles correspond to the row of the transform matrix.

the compression process, the coefficients that were canceling out the high-frequency effect
in other parts of the sequence result in the introduction of additional distortion.

The DCT can be obtained using the DFT by mirroring the original N-point sequence to
obtain a 2N-point sequence, as shown in Figure 13.6b. The DCT is simply the first N' points
of the resulting 2N-point DFT. When we take the DFT of the 2N-point mirrored sequence,
we again have to assume periodicity. However, as we can see from Figure 13.6¢, this does
not introduce any sharp discontinuities at the edges.

The DCT is substantially better at energy compaction for most correlated sources when
compared to the DFT [123]. In fact. for Markov sources with high correlation coefficient p,

_ E[Xu'rn«f-l]
TOEN

n

(13.44)

the compaction ability of the DCT is very close to that of the KLT. As many sources can
be modeled as Markov sources with high values for p. this superior compaction ability has
made the DCT the most popular transform. It is a part of many international standards,
including JPEG, MPEG, and CCITT H.261, among others.

404 13 TRANSFORM CODING

FIGURE 13. 4 The basis matrices for the DCT.

13.4.3 Discrete Sine Transform

The discrete sine transform (DST) is a complementary transform to the DCT. Where the
DCT provides performance close to the optimum KLT when the correlation coefficient p
is large, the DST performs close to the optimum KLT in terms of compaction when the
magnitude of p is small. Because of this property, it is often used as the complementary
transform to DCT in image [186] and audio [187] coding applications.

The elements of the transform matrix for an N x N DST are

(8], = | ——sin UL o v (13.45)
! N+1 N+1

13.4.4 Discrete Walsh-Hadamard Transform

A transform that is especially simple to implement is the discrete Walsh-Hadamard transform
(DWHT). The DWHT transform matrices are rearrangements of discrete Hadamard matrices,
which are of particular importance in coding theory [188]. A Hadamard matrix of order N
is defined as an N x N matrix H, with the property that HH" = NI, where I is the N x N

L

e discrete Fourier transform of a sequence.

e discrete cosine tra

NWWMUWIImmmmmﬂ

406 13 TRANSFORM CODING

identity matrix. Hadamard matrices whose dimensions are a power of two can be constructed
in the following manner:

_| Hv Hy
H,, = [Hx ~HN] (13.46)
with H, = [1]. Therefore,
| H O H | 1]

Hz_[HI wH,]—[l—l] (13.47)

11 1

Ha2 H,] _|1-1 1-1
HAZ[HZ _Hz]_ - (13.48)

55 N T T R O B B
I—-1 1 -1 1-1 1-1
1 1=1-1 1 1-1-1
I-1-1 1 1-1-11
111 1=1-1-1-1
1
1

||

o
Il

H, H] _
[H4 _H4j|_ (13.49)
-1 1 -1-1t 1-1 1

l -1 -1-1-1 1 1

—1 -1 =1 1 1~

The DWHT transform matrix H can be obtained from the Hadamard matrix by multiplying
it by a normalizing factor so that HH" = | instead of N/, and by reordering the rows in
increasing sequency order. The sequency of a row is half the number of sign changes in that
row. In Hy the first row has sequency 0, the second row has sequency 7/2. the third row has
sequency 3/2, and so on. Normalization involves multiplying the matrix by V_IW_ Reordering
the Hy matrix in increasing sequency order, we get

111 1 1 1 17
1 1 1 =1=1-1-1
1 -1-1-1-1 1 1
1-1-1 1 1-1-1

1

|

i

‘ (13.50)
1-1-1 1 1-1-1 1 ’

1

|

|

Sl =

“1-1 1-1 1 1-I
T N I e
-1 1-1 1-1 1-1]

Because the matrix without the scaling factor consists of =1, the transform operation
consists simply of addition and subtraction. For this reason, this transform is useful in
situations where minimizing the amount of computations is very important. However, the
amount of energy compaction obtained with this transform is substantially less than the
compaction obtained by the use of the DCT. Therefore, where sufficient computational
power is available, DCT is the transform of choice.

13.5 Quantization and Coding of Transform Coefficients 407

13.5 Quantization and Coding of Transform
Coefficients

If the amount of information conveyed by each coefficient is different, it makes sense to
assign differing numbers of bits to the different coefficients. There are two approaches to
assigning bits. One approach relies on the average properties of the transform coefficients,
while the other approach assigns bits as needed by individual transform coefficients.

In the first approach, we first obtain an estimate of the variances of the transform
coefficients. These estimates can be used by one of two algorithms to assign the number
of bits used to quantize each of the coefficients. We assume that the relative variance of
the coefficients corresponds to the amount of information contained in each coefficient.
Thus, coefficients with higher variance are assigned more bits than coefficients with smaller
variance.

Let us find an expression for the distortion, then find the bit allocation that minimizes
the distortion. To perform the minimization we will use the method of Lagrange [189]. If
the average number of bits per sample to be used by the transform coding system is R, and
the average number of bits per sample used by the kth coefficient is R,, then

1 M
= — 51
R Mng (13.51)

where M is the number of transform coefficients. The reconstruction error variance for the
kth quantizer o; is related to the kth quantizer input variance o; by the following:

Ui -_—o¢k2’m‘(r§A {13.52)

r

where a, is a factor that depends on the input distribution and the quantizer.
The total reconstruction error is given by

ol =Y o2 Fg; . (13.53)
6y

The objective of the bit allocation procedure is to find R, to minimize (13.53) subject to
the constraint of (13.51). If we assume that o, is a constant « for all k, we can set up the
minimization problem in terms of Lagrange multipliers as

M 5) 1 M
J=aY 2%l -\ [R-=YR,]. (13.54)
k=1 ‘ MA:I

Taking the derivative of J with respect to R, and setting it equal to zero, we can obtain this
expression for R,:

l R} l
R, = 5 log; (2an 207) — 3 logs A. (13.55)

Substituting this expression for R, in (13.51), we get a value for \:

M |
A=]](2aln2g;)" 273, (13.56)

k=1

408 13 TRANSFORM CODING

Substituting this expression for X in (13.55), we finally obtain the individual bit allocations:

R, =R+ : 1 %,
k=R/T 5108 T o T
2 [T (o) v
Although these values of R, will minimize (13.53), they are not guaranteed to be integers, or
even positive. The standard approach at this point is to set the negative R;s to zero. This will
increase the average bit rate above the constraint. Therefore, the nonzero R,s are uniformly
reduced until the average rate is equal to R.

The second algorithm that uses estimates of the variance is a recursive algorithm and
functions as follows:

(13.57)

1. Compute O'g'k for each coefficient.

2. Set R, =0 for all k and set R, = MR, where R, is the total number of bits available
for distribution.

3. Sort the variances {0} }. Suppose o is the maximum.
4. Increment R, by 1, and divide o; by 2.
5. Decrement R, by 1. If R, =0, then stop; otherwise, go to 3.

If we follow this procedure, we end up allocating more bits to the coefficients with higher
variance.

This form of bit allocation is called zonal sampling. The reason for this name can be
seen from the example of a bit allocation map for the 8 x 8 DCT of an image shown in
Table 13.4. Notice that there is a zone of coefficients that roughly comprises the right lower
diagonal of the bit map that has been assigned zero bits. In other words, these coefficients are
to be discarded. The advantage to this approach is its simplicity. Once the bit allocation has
been obtained, every coefficient at a particular location is always quantized using the same
number of bits. The disadvantage is that, because the bit allocations are performed based
on average value, variations that occur on the local level are not reconstructed properly.
For example, consider an image of an object with sharp edges in front of a relatively plain
background. The number of pixels that occur on edges is quite small compared to the total
number of pixels. Therefore, if we allocate bits based on average variances, the coefficients
that are important for representing edges (the high-frequency coefficients) will get few or

TABLE 13.4 Bit allocation map for an 8 x 8 transform.

8 7 5 3 1 1 0 0
7 5 3 2 1 0 0 0
4 3 2 1 1 0 0 0
3 3 2 1 1 0 0 0
2 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

13.5 Quantization and Coding of Transform Coefficients 409

no bits assigned to them. This means that the reconstructed image will not contain a very
good representation of the edges.

This problem can be-avoided by using a different approach to bit allocation known as
threshold coding [190. 93. 191]. In this approach. which coefficient to keep and which
to discard is not decided a priori. In the simplest form of threshold coding. we specify a
threshold value. Coefficients with magnitude below this threshold are discarded, while the
other coefficients are quantized and transmitted. The information about which coefficients
have been retained is sent to the receiver as side information. A simple approach described
by Pratt [93] is to code the first coefficient on each line regardless of the magnitude. After
this. when we encounter a coefficient with a magnitude above the threshold value, we send
two codewords: one for the quantized value of the coefficient. and one for the count of the
number of coefficients since the last coefficient with magnitude greater than the threshold.
For the two-dimensional case. the block size is usually small, and each “line” of the transform
is very short. Thus, this approach would be quite expensive. Chen and Pratt [191] suggest
scanning the block of transformed coefficients in a zigzag fashion. as shown in Figure 13.7.
If we scan an 8 x 8 block of quantized transform coefficients in this manner. we will find
that in general a large section of the tail end of the scan will consist of zeros. This is because

FIGURE 13.7 The zigzag scanning patiern for an 8 x 8 transform.

410 13 TRANSFORM CODING

generally the higher-order coefficients have smaller amplitude. This is reflected in the bit
allocation table shown in Table 13.4. As we shall see later, if we use midtread quantizers
(quantizers with a zero output level), combined with the fact that the step sizes for the
higher-order coefficients are generally chosen to be quite large, this means that many of
these coefficients will be quantized to zero. Therefore, there is a high probability that after
a few coefficients along the zigzag scan, all coefficients will be zero. In this situation, Chen
and Pratt suggest the transmission of a special end-of-block (EOB) symbol. Upon reception
of the EOB signal, the receiver would automatically set all remaining coefficients along the
zigzag scan to zero.

The algorithm developed by the Joint Photographic Experts Group (JPEG), described in
the next section, uses a rather clever variation of this approach.

13.6 Application to Image Compression—JPEG

The JPEG standard is one of the most widely known standards for lossy image compression.
It is a result of the collaboration of the International Standards Organization (ISO), which
Is a private organization, and what was the CCITT (now ITU-T), a part of the United
Nations. The approach recommended by JPEG is a transform coding approach using the
DCT. The approach is a modification of the scheme proposed by Chen and Pratt [191}. In
this section we will briefly describe the baseline JPEG algorithm. In order to illustrate the
various components of the algorithm, we will use an 8 x 8 block of the Sena image, shown
in Table 13.5. For more details, see [10].

13.6.1 The Transform

The transform used in the JPEG scheme is the DCT transform described earlier. The input
image is first “level shifted” by 2°~'; that is, we subtract 2”~! from each pixel value, where
P is the number of bits used to represent each pixel. Thus, if we are dealing with 8-bit images
whose pixels take on values between 0 and 255, we would subtract 128 from each pixel so
that the value of the pixel varies between —128 and 127. The image is divided into blocks
of size 8 x 8, which are then transformed using an 8 x 8 forward DCT. If any dimension of
the image is not a multiple of eight, the encoder replicates the last column or row until the

TABLE 13.5 An 8 x 8 block from the Sena image.

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151

156 159 158 155 158 158 157 156

13.6 Application to Image Compressi JPEG an

TABLE 13.6 The DCT coefficients corresponding to the block of data from the Sena
image after level shift.

39.88 6.56 -2.24 1.22 -0.37 —-1.08 0.79 1.13
—102.43 4.56 2.26 1.12 0.35 —0.63 —1.05 —0.48
37.77 1.31 1.77 0.25 -1.50 —2.21 -0.10 0.23
-5.67 2.24 -1.32 —0.81 1.41 0.22 —0.13 0.17
-3.37 -0.74 —1.75 0.77 —0.62 -2.65 -1.30 0.76
5.98 -0.13 -0.45 -0.77 1.99 -0.26 1.46 0.00
3.97 5.52 2.39 —0.55 —0.051 —0.84 —-0.52 -0.13
—3.43 0.51 —-1.07 0.87 0.96 0.09 0.33 0.01

final size is a multiple of eight. These additional rows or columns are removed during the
decoding process. If we take the 8 x 8 block of pixels shown in Table 13.5, subtract 128
from it. and take the DCT of this level-shifted block, we obtain the DCT coefficients shown
in Table 13.6. Notice that the lower-frequency coefficients in the top-left corner of the table
have larger values than the higher-frequency coefficients. This is generally the case, except
for situations in which there is substantial activity in the image block.

13.6.2 Quantixzxation

The JPEG algorithm uses uniform midtread quantization to quantize the various coefficients.
The quantizer step sizes are organized in a table called the quantization table and can be
viewed as the fixed part of the quantization. An example of a quantization table from the
JPEG recommendation [10] is shown in Table 13.7. Each quantized value is represented by
a label. The label corresponding to the quantized value of the transform coefficient 8,; is
obtained as

9
.= L 405 13.58
, LQ ¥ J (13.58)

1

TABLE 13.7 Sample quantization table.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

412 13 TRANSFORM CODING

TABLE 13.8 The quantizer labels obtained by using the
quantization table on the coefficients.

2 1 0 0 0 0 0 0
-9 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

where Q,; is the (i, j)th element of the quantization table, and [v] is the largest integer
smaller than x. Consider the 8, coetficient from Table 13.6. The value of 6, is 39.88. From
Table 13.7, Qy, is 16. Therefore,

39.
lop = L—gl—:—S +0A5J =2.9925] = 2. (13.59)

The reconstructed value is obtained from the label by multiplying the label with the
corresponding entry in the quantization table. Therefore. the reconstructed value ot 8, would
be Iy, x Q- Which is 2 x 16 = 32. The quantization error in this case is 39.88 — 32 = —7.88.
Similarly, from Tables 13.6 and 13.7. 8, is 6.56 and Q,, is 11. Therefore.

[(,,=L?+O.5J:LI.O96J:]. (13.60)

The reconstructed value is 11, and the quantization error is 11 —6.56 = 4.44. Continuing in
this fashion, we obtain the labels shown in Table 13.8.

From the sample quantization table shown in Table 13.7, we can see that the step size
generally increases as we move from the DC coefficient to the higher-order coefficients.
Because the quantization error is an increasing function of the step size. more quantization
error will be introduced in the higher-frequency coefficients than in the lower-frequency
coefficients. The decision on the relative size of the step sizes is based on how errors in
these coefficients will be perceived by the human visual system. Different coefficients in the
transform have widely different perceptual importance. Quantization errors in the DC and
lower AC coefficients are more easily detectable than the quantization error in the higher AC
coefficients. Therefore, we use larger step sizes for perceptually less important coefficients.

Because the quantizers are all midtread quantizers (that is. they all have a zero out-
put level). the quantization process also functions as the thresholding operation. All coeffi-
cients with magnitudes less than half the corresponding step size will be set to zero. Because
the step sizes at the tail end of the zigzag scan are larger, the probability of finding a long
run of zeros increases at the end of the scan. This is the case for the 8 x 8 block of labels
shown in Table 13.8. The entire run of zeros at the tail end of the scan can be coded with
an EOB code after the last nonzero label. resulting in substantial compression.

13.6 Application to Image Compression—JPEG 413

Furthermore. this effect also provides us with a method to vary the rate. By making the
step sizes larger, we can reduce the number of nonzero values that need to be transmitted.
which translates to a reduction in the number of bits that need to be transmitted.

13.6.3 Coding

Chen and Pratt [191] used separate Huffman codes for encoding the label for each coefficient
and the number of coefficients since the last nonzero label. The JPEG approach is somewhat
more complex but results in higher compression. In the JPEG approach. the labels for the
DC and AC coefficients are coded differently. ’

From Figure 13.4 we can see that the basis matrix corresponding to the DC coefficient
is a constant matrix. Thus, the DC coefficient is some multiple of the average value in
the 8 x 8 block. The average pixel value in any 8 x 8 block will not differ substantially
from the average value in the neighboring 8 x 8 block: therefore, the DC coefficient values
will be quite close. Given that the labels are obtained by dividing the coefficients with the
corresponding entry in the quantization table, the labels corresponding to these coefficients
will be closer still. Therefore, it makes sense to encode the differences between neighboring
labels rather than to encode the labels themselves.

Depending on the number of bits used to encode the pixel values. the number of values
that the labels, and hence the differences, can take on may become quite large. A Huffman
code for such a large alphabet would be quite unmanageable. The JPEG recommendation
resolves this problem by partitioning the possible values that the differences can take on into
categories. The size of these categories grows as a power of two. Thus, category 0 has only
one member (0). category 1 has two members (—1 and 1), category 2 has four members
(=3, =2. 2. 3), and so on. The category numbers are then Huffman coded. The number of
codewords in the Huffman code is equal to the base two logarithm of the number of possible
values that the label differences can take on. If the differences can take on 4096 possible
values, the size of the Huffman code is-log, 4096 = 12. The elements within each category
are specified by tacking on extra bits to the end of the Huffman code for that category. As
the categories are different sizes, we need a differing number of bits to identify the value
in each category. For example, because category 0 contains only one element, we need no
additional bits to specify the value. Category 1 contains two clements. so we need 1 bit
tacked on'to the end of the Huffman code for category 1 to specify the particular element
in that category. Similarly, we need 2 bits to specify the element in category 2, 3 bits for
category 3, and n bits for category n.

The categories and the corresponding difference values are shown in Table 13.9. For
example, if the difference between two labels was 6, we would send the Huffman code
for category 3. As category 3 contains the eight values {—7.—6. -5, —4,4.5.6,7). the
Huffman code for category 3 would be followed by 3 bits that would specify which of the
eight values in category 3 was being transmitted.

The binary code for the AC coefficients is generated in a slightly different manner. The
category C that a nonzero label falls in and the number of zero-valued labels Z since the
last nonzero label form a pointer to a specific Huffman code as shown in Table 13.10. Thus,
if the label being encoded falls in category 3, and there have been 15 zero-valued labels
prior to this nonzero label in the zigzag scan, then we form the pointer F/3. which points

414 13 TRANSFORM CODING

TABLE 13.9 Coding of the differences of the DC labels.

0 0

1 —1 1

2 -3 -2 2 3
3 -7 —4 4 7
4 —15 -8 8 15
5 =31 —16 16 31
6 —-63 =32 32 63
7 —-127 —64 64 127
8 —255 —128 128 255
9 =511 —256 256 511
10 —1.023 —512 512 1.023
11 —2.047 e -1,024 1.024 e 2,047
12 —4,095 e -2.048 2.048 e 4,095
13 -8, 191 —4.096 4.096 8.191
14 —16,383 —-8.192 8,192 16,383
15 —32.767 e -16,384 16,384 e 32,767
16 32,768

TABLE 13.10 Sample table for obtaining the Huffman code for a given label value
and run length. The values of Z are represented in hexadecimal.

Z/C Codeword zZ/C Codeword e zZ/C Codeword
0/0 (EOB) 1010 F/0 (ZRL) 11111111001
0/1 00 1/1 1100 F/1 THTELTILET1 10101
0/2 01 172 11011 Fr2 ITHTINIIono
0/3 100 173 1111001 F/3 [RERRRRRERARIUNE!
0/4 1011 1/4 F1110110 F/4 TLTETILTLIET 1000
0/5 11010 1/5 11111110110 F/5 TTEIITTETET 100t

to the codeword 1111111111110111. Because the label falls in category 3, we follow this
codeword with 3 bits that indicate which of the eight possible values in category 3 is the
value that the label takes on.

There are two special codes shown in Table 13.10. The first is for the end-of-block
(EOB). This is used in the same way as in the Chen and Pratt [191] algorithm: that is. if
a particular label value is the last nonzero value along the zigzag scan, the code for it is
immediately followed by the EOB code. The other code is the ZRL code, which is used
when the number of consecutive zero values along the zigzag scan exceeds 15.

To see how all of this fits together. let’s encode the labels in Table 13.8. The label
corresponding to the DC coefficient is coded by first taking the difference between the
value of the quantized label in this block and the quantized label in the previous block. If
we assume that the corresponding label in the previous block was —1, then the difference
would be 3. From Table 13.9 we can see that this value falls in category 2. Therefore. we

13.6 Application to Image Compression—JPEG 415

would send the Huffman code for category 2 followed by the 2-bit sequence 11 to indicate
that the value in category 2 being encoded was 3, and not —3, —2, or 2. To encode the AC
coefficients, we first order them using the zigzag scan. We obtain the sequence

1-93000---0

The first value, 1, belongs to category 1. Because there are no zeros preceding it, we transmit
the Huffman code corresponding to 0/1, which from Table 13.10 is 00. We then follow this
by a single bit | to indicate that the value being transmitted is | and not —1. Similarly,
—9 is the seventh element in category 4. Therefore, we send the binary string 1011, which
is the Huffman code for 0/4. followed by 0110 to indicate that —9 is the seventh element
in category 4. The next label is 3. which belongs to category 2, so we send the Huffman
code 01 corresponding to 0/2, followed by the 2 bits 11. All the labels after this point are
0. so we send the EOB Huffman code. which in this case is 1010. If we assume that the
Huffman code for the DC coefficient was 2 bits long, we have sent a grand total of 21 bits
to represent this 8 x 8 block. This translates to an average 3—6}1 bits per pixel.

To obtain a reconstruction of the original block, we perform the dequantization, which
simply consists of multiplying the labels in Table 13.8 with the corresponding values in
Table 13.7. Taking the inverse transform of the quantized coefficients shown in Table 13.11
and adding 128. we get the reconstructed block shown in Table 13.12. We can see that in
spite of going from 8 bits per pixel to ;’—, bits per pixel, the reproduction is remarkably close
to the original.

TABLE 13.11 The quantized values of the coefficients.

32 11 0 0 0 0 0 0
—108 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

TABLE 13.12 The reconstructed block.

123 122 122 121 120 120 119 119
121 121 121 120 119 118 118 118
121 121 120 119 119 118 117 117
124 124 123 122 122 121 120 120
130 130 129 129 128 128 128 127
141 141 140 140 139 138 138 137
152 152 151 151 150 149 149 148

159 159 158 157 157 156 155 155

416 13 TRANSFORM CODING

FIGURE 13.8 Sinan image coded at 0.5 hits per pixel using the JPEG algorithm.

If we wanted an even more accurate reproduction, we could do so at the cost of increased
bit rate by multiplying the step sizes in the quantization table by one-half and using these
values as the new step sizes. Using the same assumptions as before, we can show that this
will result in an increase in the number of bits transmitted. We can go in the other direction
by multiplying the step sizes with a number greater than one. This will result in a reduction
in bit rate at the cost of increased distortion.

Finally, we present some examples of JPEG-coded images in Figures 13.8 and 13.9.
These were coded using shareware generated by the Independent JPEG Group (orga-
nizer, Dr. Thomas G. Lane). Notice the high degree of “blockiness™ in the lower-rate image
(Figure 13.8). This is a standard problem of most block-based techniques, and specifically
of the transform coding approach. A number of solutions have been suggested for removing
this blockiness, including postfiltering at the block edges as well as transforms that overlap
the block boundaries. Each approach has its own drawbacks. The filtering approaches tend
to reduce the resolution of the reconstructions, while the overlapped approaches increase the
complexity. One particular overlapped approach that is widely used in audio compression is
the modified DCT (MDCT), which is described in the next section.

13.7 Application to Avdio Compression—=The
MDCT

As mentioned in the previous section, the use of the block based transform has the unfortunate
effect of causing distortion at the block boundaries at low rates. A number of techniques
that use overlapping blocks have been developed over the years [192]. One that has gained

13.7 Application to Audio Compression—The MDCT 417

FIGURE 13.9 Sinan image coded at 0.25 bits per pixel using the JPEG algorithm.

wide acceptance in audio compression is a transform based on the discrete cosine transform
called the modified discrete cosine transform (MDCT). It is used in almost all popular audio
coding standards from mp3 and AAC to Ogg Vorbis.

The MDCT used in these algorithms uses 50% overlap. That is, each block overlaps half
of the previous block and half of the next block of data. Consequently, each audio sample
is part of two blocks. If we were to keep all the frequency coefficients we would end up
with twice as many coefficients as samples. Reducing the number of frequency coefficients
results in the introduction of distortion in the inverse transform. The distortion is referred
to as time domain aliasing [193]. The reason for the name is evident if we consider that the
distortion is being introduced by subsampling in the frequency domain. Recall that sampling
at less than the Nyquist frequency in the time domain leads to an overlap of replicas of the
frequency spectrum, or frequency aliasing. The lapped transforms are successful because
they are constructed in such a way that while the inverse transform of each block results in
time-domain aliasing, the aliasing in consecutive blocks cancel each other out.

Block i-7 Block i+ 1

Block i Block i +2

FIGURE 13. 10 Source output sequence.

418 13 TRANSFORM CODING

Consider the scenario shown in Figure 13.10. Let’s look at the coding for block i and
block i+ 1. The inverse transform of the coefficients resulting from both these blocks will
result in the audio samples in the subblock ¢g. We assume that the blocksize is N and
therefore the subblock size is N/2. The forward transform can be represented by an N/2 x N
matrix P. Let us partition the matrix into two N/2 x N/2 blocks. A and B. Thus

P =[A|B]

Let x, = [plg]. then the forward transform Px, can be written in terms of the subblocks as

x,:[A|B][’q’]

The inverse transform matrix Q can be represented by an N x N/2, which can be partitioned
into two N/2 x N/2 blocks, C and D.
C
o-[5]

Applying the inverse transform, we get the reconstruction values Y

. _ o lc p|_| CAp+CBg
‘\’_QX’—QP‘\’_[1)][A|B]|:qj|_|:DAp+DBq

Repeating the process for block i+ 1 we get

. _ | cC g, | CAq+CBr
Y = QX:+I "' QP'\HI - [D] [AIB][r] - I:DA(]+DBF]
To cancel out the aliasing in the second half of the block we need
CAq+CBr+DAp+ DBg =gq

From this we can get the requirements on the transform

CB =0 (13.61)
DA =0 (13.62)
CA+DB = I (13.63)

Note that the same requirements will help cancel the aliasing in the first half of block i by
using the second half of the inverse transform of block i — 1. One selection that satisfies the
last condition is

CA

Il

N mme B[o=

(-7 (13.64)

DB = - (I+J) (13.65)

13.8 Summary 419

The forward modified discrete transform is given by the following equation:
L I N 13.66
X =) x,c0s 7\,‘(/\+5)('1+§+I) (13.6¢)

n=0

where v, are the audio samples and X, are the frequency coefficients. The inverse MDCT
is given by

$-1

22 . 2w] 1 N
Y=g ngcos(—ﬁ(A +§)(n+§+z)) (13.67)
or in terms of our matrix notation,
27 1 I N
2 2@ 1. .1 N
(0., = NC()-*(‘N—(I‘FE)(]-%E'*‘Z)) (13.69)

It is easy to verify that, given a value of N. these matrices satisfy the conditions for alias
cancellation.

Thus. while the inverse transform for any one block will contain aliasing, by using the
inverse transform of neighboring blocks the aliasing can be canceled. What about blocks
that do not have neighbors—that is. the first und last blocks? One way to resolve this
problem is to pad the sampled audio sequence with N/2 zeros at the beginning and end
of the sequence. In practice. this is not necessary, because the data to be transformed is
windowed prior to the transform. For the first and last blocks we use a special window that
has the same effect as introducing zeros. For information on the design of windows for the
MDCT. see [194]. For more on how the MDCT is used in audio compression techniques. see
Chapter 16.

13.8 Summary

In this chapter we have described the concept of transform coding and provided some of the
details needed for the investigation of this compression scheme. The basic encoding scheme
works as follows:

B Divide the source output into blocks. In the case of speech or audio data. they will be
one-dimensional blocks. In the case of images, they will be two-dimensional blocks.
In image coding. a typical block size is 8 x 8. In audio coding the blocks are generally
overlapped by 50%.

8 Tuke the transform of this block. In the case of one-dimensional data, this involves
pre-multiplying the N vector of source output samples by the transform matrix. In the
case of image data. for the transforms we have looked at. this involves pre-multiplying
the N x N block by the transform matrix and post-multiplying the result with the

420

13 TRANSFORM CODING

transpose of the transform matrix. Fast algorithms exist for performing the transforms
described in this chapter (see [195]).

B Quantize the coefticients. Various techniques exist for the quantization of these coef-

ficients. We have described the approach used by JPEG. In Chapter 16 we describe
the quantization techniques used in various audio coding algorithms.

B Encode the quantized value. The quantized value can be encoded using a fixed-length

code or any of the different variable-length codes described in earlier chapters. We
have described the approach taken by JPEG.

The decoding scheme is the inverse of the encoding scheme for image compression. For the
overlapped transform used in audio coding the decoder adds the overlapped portions of the
inverse transform to cancel aliasing.

The basic approach can be modified depending on the particular characteristics of the
data. We have described some of the modifications used by various commercial algorithms
for transform coding of audio signals.

Further Reading

For detailed information about the JPEG standard, JPEG Still Image Data Compression
Standard, by W.B. Pennebaker and J.L. Mitchell [10], is an invaluable reference. This
book also contains the entire text of the official draft JPEG reccmmendation, ISO DIS
10918-1 and ISO DIS 10918-2.

For a detailed discussion of the MDCT and how 1t is used in audio coding, an
excellent source is Introduction to Digital Audio Coding Standards. by M. Bosi and
R.E. Goldberg [194]

Chapter 12 in Digital Coding of Waveforms, by N.S. Jayant and P. Noll [123]. provides
a more mathematical treatment of the subject of transform coding.

A good source for information about transforms is Fundamentals of Digital Image
Processing, by A.K. Jain [196]. Another one is Digital Image Processing. by R.C.
Gonzales and R.E. Wood [96]. This book has an especially nice discussion of the
Hotelling transform.

The bit allocation problem and its solutions are described in Vector Quantization and
Signal Compression, by A. Gersho and R.M. Gray [5].

A very readable description of transform coding of images is presented in Digital
Image Compression Techniques. by M. Rabbani and P.W. Jones [80].

The Data Compression Book, by M. Nelson and J.-L. Gailly [60]. provides a very
readable discussion of the JPEG algorithm.

13.9 Projects and Problems an

13

.9 Projects and Problems

1. A square matrix A has the property that ATA = AA” = I, where I is the identity

matrix. If X, and X, are two N-dimensional vectors and

0, = AX,
0, = AX,
then show that
X, = X,]> =10, -0, (13.70)

Consider the following sequence of values:
10 o112 11 12 13 12 11
0 -10 8 -7 8 -8 7 -7
{a) Transform each row separately using an eight-point DCT. Plot the resulting 16
transform coefficients.

{b} Combine all 16 numbers into a single vector and transform it using a 16-point
DCT. Plot the 16 transform coefficients.

{¢) Compare the results of (a) and (b). For this particular case would you suggest a
block size of 8 or 16 for greater compression? Justify your answer.

Consider the following “image™
4 3 2 1

38

3 1
2 1 1 1
I 1 1 1

{a} Obtain the two-dimensional DWHT transform by first taking the one-dimensional
transform of the rows, then taking the column-by-column transform of the result-
ing matrix. '

{b) Obtain the two-dimensional DWHT transform by first taking the one-dimensional
. transform of the columns, then taking the row-by-row transform of the resulting
matrix.

(¢} Compare and comment on the results of (a) and (b).

(This problem was suggested by P.F. Swaszek.) Let us compare the energy compaction
properties of the DCT and the DWHT transforms.

(a) For the Sena image. compute the mean squared value of each of the 64 coeffi-
cients using the DCT. Plot these values. ’

{b) For the Sena image, compute the mean squared value of each of the 64 coeffi-
cients using the DWHT. Plot these values.

(¢} Compare the results of (a) and (b). Which transform provides more energy
compaction? Justify your answer.

422

5.

13 TRANSFORM CODING

Implement the transform and quantization portions of the JPEG standard. For coding
the labels use an arithmetic coder instead of the modified Huffiman code described in
this chapter.

{a) Encode the Sena image using this transform coder at rates of (approximately)
0.25. 0.5, and 0.75 bits per pixel. Compute the mean squared error at each rate
and plot the rate versus the mse.

{b) Repeat part (a) using one of the public domain implementations of JPEG.

(¢} Compare the plots obtained using the two coders and comment on the relative
performance of the coders.

One of the extensions to the JPEG standard allows for the use of multiple quantization
matrices. Investigate the issues involved in designing a set of quantization matrices.
Should the quantization matrices be similar or dissimilar? How would you measure
their similarity? Given a particular block, do you need to quantize it with each
quantization matrix to select the best? Or is there a computationally more efficient
approach? Describe your findings in a report.

Subband Coding

14.1 Overview

j n this chapter we present the second of three approaches to compression in
which the source output is decomposed into constituent parts. Each constituent
part is encoded using one or more of the methods that have been described

previously. The approach described in this chapter. known as subband coding,

relies on separating the source ontput into different bands of frequencies using
digital filters. We provide a general description of the subband coding system and, for those
readers with some knowledge of Z-transforms, a more mathematical analysis of the system.
The sections containing the mathematical analysis are not essential to understanding the
rest of the chapter and are marked with a *. If you are not interested in the mathematical
analysis, you should skip these sections. This is followed by a description of a popular
approach to bit allocation. We conclude the chapter with applications to audio and image
compression.

14.2 Introduction

In previous chapters we looked at a number of different compression schemes. Each of these
schemes is most efficient when the data have certain characteristics. A vector quantization
scheme is most effective if blocks of the source output show a high degree of clustering.
A differential encoding scheme is most effective when the sample-to-sample difference is
small. If the source output is truly random, it is best to use scalar quantization or lattice vector
quantization. Thus, if a source exhibited certain well-defined characteristics, we could choose
a compression scheme most suited to that characteristic. Unfortunately, most source outputs
exhibit a combination of characteristics, which makes it difficult to select a compression
scheme exactly suited to the source output.

424 14 SUBBAND CODING

In the last chapter we looked at techniques for decomposing the source output into
different frequency bands using block transforms. The transform coefficients had differing
statistics and differing perceptual importance. We made use of these differences in allocating
bits for encoding the different coefficients. This variable bit allocation resulted in a decrease
in the average number of bits required to encode the source output. One of the drawbacks
of transform coding is the artificial division of the source output into blocks, which results.
in the generation of coding artifacts at the block edges, or blocking. One approach to
avoiding this blocking is the lapped orthogonal transform (LOT) [192]. In this chapter
we look at a popular approach to decomposing the image into different frequency bands
without the imposition of an arbitrary block structure. After the input has been decomposed
into its constituents, we can use the coding technique best suited to each constituent to
improve compression performance. Furthermore, each component of the source output may
have different perceptual characteristics. For example, quantization error that is perceptually
objectionable in one component may be acceptable in a different component of the source
output. Therefore, a coarser quantizer that uses fewer bits can be used to encode the:
component that is perceptually less important.

Consider the sequence {x,} plotted in Figure 14.1. We can see that, while there is a
significant amount of sample-to-sample variation, there is also an underlying long-term trend
shown by the dotted line that varies slowly.

One way to extract this trend is to average the sample values in a moving window.
The averaging operation smooths out the rapid variations, making the slow variations more
evident. Let’s pick a window of size two and generate a new sequence {y,} by averaging
neighboring values of x,:

x,+x
I (14.1)
The consecutive values of v, will be closer to each other than the consecutive values of x,,.
Therefore, the sequence {v,} can be coded more efficiently using differential encoding than
we could encode the sequence {x,}. However, we want to encode the sequence {x,}, not
the sequence {y,}. Therefore, we follow the encoding of the averaged sequence {y,} by the
difference sequence {z,}:

Ip =Xy =Yg =Xy — = s . (]42)

FIGCURE 14. 1 A rapidly changing source output that contains a long-term
component with slow variations.

14.2 Introduction 425

The sequences {v,} and {z,} can be coded independently of each other. This way we can
use the compression schemes that are best suited for each sequence.

Example 14.2.1:

Suppose we want to encode the following sequence of values {x,}:

10 14 10 12 14 8 14 12 10 8 10 12

There is a significant amount of sample-to-sample correlation, so we might consider using
a DPCM scheme to compress this sequence. In order to get an idea of the requirements on
the quantizer in a DPCM scheme, let us take a look at the sample-to-sample differences
X, — X1+

0 4 -4 2 2 -6 6 -2 -2 -2 2 2

Ignoriny the first value, the dynamic range of the differences is from —6 to 6. Suppose we
wanl to quantize these values using m bits per sample. This means we could use a quantizer
with M = 2" levels or reconstruction values. If we choose a uniform quantizer, the size
of each quantization interval, A, is the range of possible input values divided by the total
number of reconstruction values. Therefore.

12

A==
M

which would give us a maximum quantization error of 2 or %

2

Now let’s generate two new sequences {y,} and {z,} according to (14.1) and (14.2).

All three sequences are plotted in Figure 14.2. Notice that given y, and Z,,» we can always
recover x,:

x'! :.Vn+:n' (]43)

Let’s try to encode each of these sequences. The sequence {v,} is

n

100 12 12 11 13 11 11 13 11 10 9 11

Notice that the {v,} sequence is “smoother” than the {x,} sequence—the sample-to-sample
variation is much smaller. This becomes evident when we look at the sample-to-sample
differences:

0o 2 0 -1 2 -2 0 2 -2 -1 -1 2

The difference sequences {x, —x,_;} and {v, —v,_,} are plotted in Figure 14.3. Again,
ignoring the first difference, the dynamic range of the differences Yo — Ya_y 18 4. If we take

the dynamic range of these differences as a meusure of the range of the quantizer, then for

an M level quantizer, the step size of the quantizer is % and the maximum quantization

426

Value

14 SUBBAND CODING

L2 7~© Sample

L4 T \\ T P T K bl
I | S 1 number

N 8 10

FIGURE 14. 2

1o
|

+ \ A

Original set of samples and the two components.

\ AT e

0 VT Ny ®

_ Sample

Value 0 T

"7 number

FIGURE 14.3

Difference sequences generated from the original and averaged
sequences.

14.2 Introduction 427

5

error is . This maximum quantization error is one-third the maximum quantization error
incurred when the {x,} sequence is quantized using an M-level quantizer. However, in order
to reconstruct {x,}. we also need to transmit {z,}. The {z,} sequence is

~n ~n

The dynamic range for z, is 6. half the dynamic range of the difference sequence for
{x,}. (We could have inferred this directly from the definition of Z,-) The sample-to-sample
difference varies more than the actual values. Therefore. instead of differentially encoding
this sequence. we quantize each individual sample. For an M-level quantizer. the required
step size would be \% giving a maximum quantization error of T:

For the same number of bits per sample. we can code both ¥, and z, and incur less
distortion. At the receiver. we add v, and z, to get the original sequence x, back. The
maximum possible quantization error in the reconstructed sequence would be % which is
less than the maximum error we would incur if we encoded the {x,} sequence directly.

Although we use the same number of bits for each value of ¥, and z,. the number of
elements in each of the {v,} and {z,} sequences is the same as the number of elements in
the original {x,} sequence. Although we are using the same number of bits per sample. we
are transmitting twice as many samples and. in effect. doubling the bit rate.

We can avoid this by sending every other value of v, and z,. Let's divide the sequence
{»,} into subsequences {y,,} and {y,,_,}-—that is. a subsequence containing only the odd-
numbered elements {v,,v:....}. and a subsequence containing only the even-numbered
elements {v,.y,....}. Similarly. we divide the {:,} sequence into subsequences {:.,}
and {z,, ,}. If we transmit either the even-numbered subsequences or the odd-numbered
subsequences. we would transmit only as many elements as in the original sequence. To see
how we recover the sequence {x,} from these subsequences. suppose we only transmitted
the subsequences {y.,} and {z,,}:

. Yoy + Ny
oon ’)

Aoy = Xy,
2

To recover the even-numbered elements of the {x,} sequence. we add the two subse-
quences. In order to obtain the odd-numbered members of the {x,} sequence. we take the
difference:

~2n

y?.n+:~3n = X (]44)
y‘Zn_zln = Xa_1- (]45)

Thus, we can recover the entire original sequence {x, }, sending only as many bits as required
to transmit the original sequence while incurring less distortion.

Is the last part of the previous statement still true? In our original scheme we proposed
to transmit the sequence {y,} by transmitting the differences v, — v,_,. As we now need to
transmit the subsequence {y,,}, we will be transmitting the differences y,, — y,,_, instead.
In order for our original statement about reduction in distortion to hold, the dynamic range

428 14 SUBBAND CODING

of this new sequence of differences should be less than or equal to the dynamic range of the
original difference. A quick check of the {v,} shows us that the dynamic range of the new
differences is still 4, and our claim of incurring less distortion still holds. ¢

There are several things we can see from this example. First. the number of different
values that we transmit is the same. whether we send the original sequence {x,} or the
two subsequences {y,} and {z,}. Decomposing the {x,} sequence into subsequences did
not result in any increase in the number of values that we need to transmit. Second, the
two subsequences had distinctly different characteristics, which led to our use of different
techniques to encode the different sequences. If we had not split the {x,} sequence, we would
have been using essentially the same approach to compress both subsequences. Finally,
we could have used the same decomposition approach to decompose the two constituent
sequences, which then could be decomposed further still.

While this example was specific to a particular set of values. we can see that decomposing
a signal can lead to different ways of looking at the problem of compression. This added
flexibility can lead to improved compression performance.

Before we leave this example let us formalize the process of decomposing or analysis,
and recomposing or synthesis. In our example, we decomposed the input sequence {x,} into
two subsequences {v,} and {z,} by the operations

Xy +X"_1

y, = "2 (14.6)
Z, = Zn Tl (14.7)

We can implement these operations using discrete time filters. We briefly considered discrete
time filters in Chapter 12. We take a slightly more detailed look at filters in the next section.

14.3 Filters

A system that isolates certain frequency components is called a filter. The analogy here
with mechanical filters such as coffee filters is obvious. A coffee filter or a filter in a water
purification system blocks coarse particles and allows only the finer-grained components
of the input to pass through. The analogy is not complete, however, because mechanical
filters always block the coarser components of the input, while the filters we are discussing
can selectively let through or block any range of frequencies. Filters that only let through
components below a certain frequency f, are called low-pass filters; filters that block all
frequency components below a certain value f; are called high-pass filters. The frequency
fo is called the cutoff frequency. Filters that let through components that have frequency
content above some frequency f, but below frequency f, are called band-pass filters.

One way to characterize filters is by their magnitude transfer function—the ratio of the
magnitude of the input and output of the filter as a function of frequency. In Figure 14.4
we show the magnitude transfer function for an ideal low-pass filter and a more realistic
low-pass filter, both with a cutoff frequency of f,. In the ideal case, all components of
the input signal with frequencies below fo are unaffected except for a constant amount of

14.3 Filters 429

Magnitude Magnitude

JAVANEN

fo fo

Frequency Frequency

FIGURE 14. 4 Ideal and realistic low-pass filter characteristics.

amplification. All frequencies above f, are blocked. In other words, the cutoff is sharp. In
the case of the more realistic filter. the cutoff is more gradual. Also, the amplification for the
components with frequency less than f; is not constant, and components with frequencies
above f, are not totally blocked. This phenomenon is referred to as ripple in the passband
and stopband.

The filters we will discuss are digital filters, which operate on a sequence of numbers
that are usually samples of a continuously varying signal. We have discussed sampling
in Chapter 12. For those of you who skipped that chapter. let us take a brief look at the
sampling operation.

How often does a signal have to be sampled in order to reconstruct the signal from the
samples? If one signal changes more rapidly than another, it is reasonable to assume that we
would need to sample the more rapidly varying signal more often than the slowly varying
signal in order to achieve an accurate representation. In fact, it can be shown mathematically
that if the highest frequency component of a signal is f,. then we need to sample the signal
at more than 2 f, times per second. This result is known as the Nyquist theorem or Nyquist
rule after Harry Nyquist, a famous mathematician from Bell Laboratories. His pioneering
work laid the groundwork for much of digital communication. The Nyquist rule can also
be extended to signals that only have frequency components between two frequencies f,
and f5. If f, and f, satisfy certain criteria, then we can show that in order to recover the
signal exactly, we need to sample the signal at a rate of at least 2(f> — f,) samples per
second [123].

What would happen if we violated the Nyquist rule and sampled at less than twice
the highest frequency? In Chapter 12 we showed that it would be impossible to recover
the original signal from the sample. Components with frequencies higher than half the
sampling rate show up at lower frequencies. This process is called aliasing. In order to
prevent aliasing, most systems that require sampling will contain an “anti-aliasing filter” that
restricts the input to the sampler to be less than half the sampling frequency. If the signal
contains components at more than half the sampling frequency, we will introduce distortion
by filtering out these components. However, the distortion due to aliasing is generally more
severe than the distortion we introduce due to filtering.

430 14 SUBBAND CODING

Digital filtering involves taking a weighted sum of current and past inputs to the filter
and, in some cases, the past outputs of the filter. The general form of the input-output
relationships of the filter is given by

N M
.yn = Zazxn—i—{hzblyn*i (]48)
i=1

i=0

where the sequence {x,} is the input to the filter, the sequence {y,} is the output from the
filter, and the values {a,;} and {b,} are called the filter coefficients.

If the input sequence is a single | followed by all Os. the output sequence is called the
impulse response of the filter. Notice that if the b, are all 0, then the impulse response will
die out after N samples. These filters are called finite impulse response (FIR) filters. The
number N is sometimes called the number of taps in the filter. It any of the b, have nonzero
values. the impulse response can, in theory. continue forever. Filters with nonzero values
for some of the b, are called infinite impulse response (1IR) filters.

Example 14.3.1:

Suppose we have a filter with a, = 1.25 and a, = 0.5. If the input sequence {x,} is given by

o= bon=0 (14.9)
0 n#0,

then the output is given by

Yo = a()x()+alx,] =1.25
v = agx; +a,x,=0.5
v, =0 n<Qorn>l.

n

This output is called the impulse response of the filter. The impulse response sequence is
usually represented by {4, }. Therefore, for this filter we would say that

1.25 n=0
h,=305 n=1 (14.10)
0 otherwise.

Notice that if we know the impulse response we also know the values of a;. Knowledge
of the impulse response completely specifies the filter. Furthermore, because the impulse
response goes to zero after a finite number of samples (two in this case), the filter is an FIR
filter.

The filters we used in Example 14.2.1 are both two-tap FIR filters with impulse responses

% n=20
h,= % n=1 (14.11)
0 otherwise

14.3 Filters 431

for the “averaging” or low-pass filter, and

n=0
h, = % n=1 {14.12)

0 otherwise

I ro)—

for the “difference” or high-pass filter.
Now let’s consider a different filter with @, = 1 and b, = 0.9. For the same input as
above. the output is given by

Yo = dpxy+ by, = 1(1)+0.9(0) =1 (14.13)
¥ = apx; + by, = 1(0)+0.9(1) = 0.9 : (14.14)
Vs = dyxs+ by, = 1(0)+0.9(0.9) = 0.81 (14.15)
v, = (0.9)". (14.16)

The impulse response can be written more compactly as

no=1° n<0 (14.17)
(0.9 n=>0.

Notice that the impulse response is nonzero for all n > 0. which makes this an IIR filter. 4

Although it is not as clear in the IIR case as it was in the FIR case, the impulse response
completely specifies the filter. Once we know the impulse response of the filter, we know
the relationship between the input and output of the filter. If {x,} and {v,} are the input and
output, respectively, of a filter with impulse response {h,}} . then {y,} can be obtained
from {x,} and {h,} via the following relationship:

M
Yo = 2o X (14.18)

k=0

where M is finite for an FIR filter and infinite for an IIR filter. The relationship, shown in
(14.18), 1s known as convolution and can be easily obtained through the use of the properties
of linearity and shift invariance (see Problem 1).

Because FIR filters are simply weighted averages, they are always stable. When we say a
tilter is stable we mean that as long as the input is bounded. the output will also be bounded.
This is not true of IIR filters. Certain IIR filters can give an unbounded output even when
the input is bounded.

432 14 SUBBAND CODING

Example 14.3.2:

Consider a filter with a, = 1 and b, = 2. Suppose the input sequence is a single | followed
by 0Os. Then the output is

Yo = agxg+biy =1(1)+2(0)=1 (14.19)
yp = agxg+byy,=1(0)+2(1) =2 (14.20)
Y, = agx;+by =1(0)+2(2) =4 (14.21)
Yo = 2" (14.22)

Even though the input contained a single 1, the output at time n = 30 is 2*°, or more than a
billion! ¢

Although IIR filters can become unstable, they can also provide better performance, in
terms of sharper cutoffs and less ripple in the passband and stopband for a fewer number of
coefficients.

The study of design and analysis of digital filters is a fascinating and important subject.
We provide some of the details in Sections 14.5-14.8. If you are not interested in these
topics, you can take a more utilitarian approach and make use of the literature to select the
necessary filters rather than design them. In the following section we briefly describe some
of the families of filters used to generate the examples in this chapter. We also provide filter
coefficients that you can use for experiment.

14.3.1 Some Filters Used in Subband Coding

The most frequently used filter banks in subband coding consist of a cascade of stages, where
each stage consists of a low-pass filter and a high-pass filter, as shown in Figure 14.5. The
most popular among these filters are the quadrature mirror filters (QMF), which were first
proposed by Crosier, Esteban, and Galand [197]. These filters have the property that if the
impulse response of the low-pass filter is given by {#,}, then the high-pass impulse response
is given by {(—1)"hy_,_,}. The QMEF filters designed by Johnston [198] are widely used in
a number of applications. The filter coefficients for 8-, 16-, and 32-tap filters are given in
Tables 14.1-14.3. Notice that the filters are symmetric; that is,

n=0.1,..., g—l. (14.23)

<

thlfn = h

n

As we shall see later, the filters with fewer taps are less efficient in their decomposition
than the filters with more taps. However, from Equation (14.18) we can see that the number
of taps dictates the number of multiply-add operations necessary to generate the filter outputs.
Thus, if we want to obtain more efficient decompositions. we do so by increasing the amount
of computation.

Another popular set of filters are the Smith-Barnwell filters [199], some of which are
shown in Tables 14.4 and 14.5.

14.3 Filters

Low-pass

filter

High-pass

filter

Low-pass
filter
Low-pass High-pass
filter filter
Low-pass
filter
High-pass High-pass
filter filter
Low-pass Low-pass
filter filter
High-pass
filter
High-pass Low-pass
filter filter
High-pass
filter

433

FIGURE 14. 5 An eight-band filter bank.

TABLE 14.1

Coefficients for the 8-tap
Johnston low-pass filter.

0.00938715
0.06942827
—0.07065183
0.48998080

TABLE 14.2

Coefficients for the 16-tap
Johnston low-pass filter.

hy, hys
hy hy,
hy, hys
hy hy
hy, hyy
hs. hyy
he, hy
hy, hy

0.002898163
—0.009972252
—0.001920936

0.03596853
—0.01611869
—0.09530234

0.1067987

0.4773469

434 14 SUBBAND CODING

TABLE 14.3 Coefficients for the 32-tap
Johnston low-pass filter.

ho- s, 0.0022551390
hy. hy, —0.0039715520
By ha —0.0019696720
By ho 0.0081819410
hy. hy 0.00084268330
hy. ha —0.014228990
R has 0.0020694700
hy. ha, 0.022704150
hy. has —0.0079617310
h. ha —0.034964400
hio- s, 0.019472180
g 0.054812130
s hig ~0.044524230
By by —0.099338590
iy hys 0.13297250
hys. by 0.46367410

TABLE 14.4 Coefficients for the eight-tap
Smith-Barnwell low-pass filter.

hy 0.0348975582178515
h, —0.01098301946252854
h —-0.06286453934951963
hy 0.223907720892568
hy 0.556856993531445
hs 0.357976304997285
hg —0.02390027056113145
hy —-0.07594096379188282

TABLE 14.5 Coefficients for the 16-tap
Smith-Barnwell low-pass filter.

hy 0.02193598203004352
h, 0.001578616497663704
hy —0.06025449102875281
hy —0.0118906596205391

hy 0.137537915636625

hy 0.05745450056390939
hy -0.321670296165893

hy —0.528720271545339

hy —0.295779674500919

hy 0.0002043 110845170894
By 0.02906699789446796
hy, —0.03533486088708 146
hys —0.006821045322743358
hy, 0.02606678468264118
hy, 0.001033363491944126

hys —0.01435930957477529

14.3 Filters 435

These families of filters differ in a number of ways. For example, consider the Johnston
eight-tap filter and the Smith-Barnwell eight-tap filter. The magnitude transfer functions for
these two filters are plotted in Figure 14.6. Notice that the cutoff for the Smith-Barnwell
filter is much sharper than the cutoff for the Johnston filter. This means that the separation
provided by the eight-tap Johnston filter is not as good as that provided by the eight-tap
Smith-Barnwell filter. We will see the effect of this when we look at image compression
later in this chapter.

These filters are examples of some of the more popular filters. Many more filters exist
in the literature, and more are being discovered.

dB -20- ,7 -
—40 o
-60 T T T T | T |
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency in Hz
(a)
20 | ! | | [| {
0
dB 20 e
-40AF\\ //"\\ l//
—60 B — T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz

(b)

FIGURE 14. 6 Magnitude transfer functions of the (a) eight-tap Johnston and
(b) eight-tap Smith-Barnwell filters.

436 14 SUBBAND CODING

14.4 The Basic Subband Coding Algorithm

The basic subband coding system is shown in Figure 14.7.

14.4.1 Analysis

The source output is passed through a bank of filters, called the analysis filter bank, which
covers the range of frequencies that make up the source output. The passbands of the filters
can be nonoverlapping or overlapping. Nonoverlapping and overlapping filter banks are
shown in Figure 14.8. The outputs of the filters are then subsampled.

The justification for the subsampling is the Nyquist rule and its generalization, which
tells us that we only need twice as many samples per second as the range of frequencies.
This means that we can reduce the number of samples at the output of the filter because the
range of frequencies at the output of the filter is less than the range of frequencies at the
input to the filter. This process of reducing the number of samples is called decimation,' or
downsampling. The amount of decimation depends on’the ratio of the bandwidth of the filter
output to the filter input. If the bandwidth at the output of the filter is 1/M of the bandwidth
at the input to the filter, we would decimate the output by a factor of M by keeping every
Mth sample. The symbol M | is used to denote this decimation.

Once the output of the filters has been decimated, the output is encoded using one of
several encoding schemes, including ADPCM, PCM, and vector quantization.

Analysis () R Synthesis |
™ fiter 1 Encoder 1 Decoder 1 -—@— filter 1
| | Analysis L Synthesis | |
E@— Encoder 2 Decoder 2 —@— filter 2
— . e ‘ -
|| Analysis Encoder 3 |—-§-— Decoder 3 Synthesis ||
filter 3 5 filter 3
Analysis | /|, V| mrooda s L. _ Synthesis
@ Encoder M Decoder M —@—- filter M

FIGURE 14.7 Block diagram of the subband coding system.

! The word decimation has a rather bloody origin. During the time of the Roman empire, if a legion broke ranks and
ran during battle, its members were lined up and every tenth person was killed. This process was called decimation.

14.4 The Basic Subband Coding Algorithm 437

Frequency

000000

Frequency

FIGURE 14. 8 Nonoverlapping and overlapping filter banks.

14.4.2 Quantization and Coding

Along with the selection of the compression scheme, the allocation of bits between the
subbands is an important design parameter. Different subbands contain differing amounts of
information. Therefore, we need to allocate the available bits among the subbands according
to some measure of the information content. There are a number of different ways we could
distribute the available bits. For example, suppose we were decomposing the source output
into four bands and we wanted a coding rate of 1 bit per sample. We could accomplish this
by using 1 bit per sample for each of the four bands. On the other hand, we could simply
discard the output of two of the bands and use 2 bits per sample for the two remaining
bands. Or, we could discard the output of three of the four filters and use 4 bits per sample
to encode the output of the remaining filter.

This bit allocation procedure can have a significant impact on the quality of the final
reconstruction, especially when the information content of different bands is very different.

If we use the variance of the output of each fiiter as a measure of information, and
assume that the compression scheme is scalar quantization, we can arrive at several simple
bit allocation schemes (see Section 13.5). If we use a slightly more sophisticated model
for the outputs of the filters, we can arrive at significantly better bit allocation procedures
(see Section 14.9).

14.4.3 Synthesis

The quantized and coded coefficients are used to reconstruct a representation of the original
signal at the decoder. First, the encoded samples from each subband are decoded at the
receiver. These decoded values are then upsampled by inserting an appropriate number of

438 14 SUBBAND CODING

0Os between samples. Once the number of samples per second has been brought back to the
original rate, the upsampled signals are passed through a bank of reconstruction filters. The
outputs of the reconstruction filters are added to give the final reconstructed outputs.

We can see that the basic subband system is simple. The three major components of this
system are the analysis and svnthesis filters, the bit allocation scheme, and the encoding
scheme. A substantial amount of research has focused on each of these components. Various
filter bank structures have been studied in order to find filters that are simple to implement
and provide good separation between the frequency bands. In the next section we briefly
look at some of the techniques used in the design of filter banks, but our descriptions
are necessarily limited. For a (much) more detailed look, see the excellent book by P.P.
Vaidyanathan [200].

The bit allocation procedures have also been extensively studied in the contexts of
subband coding, wavelet-based coding, and transform coding. We have already described
some bit allocation schemes in Section 13.5, and we describe a different approach in
Section 14.9. There are also some bit allocation procedures that have been developed in the
context of wavelets, which we describe in the next chapter.

The separation of the source output according to frequency also opens up the possibility
for innovative ways to use compression algorithms. The decomposition of the source output
in this manner provides inputs for the compression algorithms, each of which has more clearly
defined characteristics than the original source output. We can use these characteristics to
select separate compression schemes appropriate to each of the different inputs.

Human perception of audio and video inputs is frequency dependent. We can use this
fact to design our compression schemes so that the frequency bands that are most important
to perception are reconstructed most accurately. Whatever distortion there has to be is
introduced in the frequency bands to which humans are least sensitive. We describe some
applications to the coding of speech, audio, and images later in this chapter.

Before we proceed to bit allocation procedures and implementations, we provide a more
mathematical analysis of the subband coding system. We also look at some approaches to
the design of filter banks for subband coding. The analysis relies heavily on the Z-transform
concepts introduced in Chapter 12 and will primarily be of interest to readers with an
electrical engineering background. The material is not essential to understanding the rest of
the chapter; if you are not interested in these details, you should skip these sections and go
directly to Section 14.9.

14.5 Design of Filter Banks x

In this and the following starred section we will take a closer look at the analysis, down-
sampling, upsampling, and synthesis operations. Our approach follows that of [201]. We
assume familiarity with the Z-transform concepts of Chapter 12. We begin with some nota-
tion. Suppose we have a sequence xg, X, X,,.... We can divide this sequence into two
subsequences: x,, X5, X4, ... and x,, x3, Xs, ... using the scheme shown in Figure 14.9,
where z7! corresponds to a delay of one sample and | M denotes a subsampling by a factor
of M. This subsampling process is called downsampling or decimation.

14.5 Design of Filter Banks % 439

Xy Xp Xy o o o @ Xg X3 Xy 0 e .

/1—7\ Ox x x5 « . .

FIGURE 14.9 Decomposition of an input sequence into its odd and even
components.

Xp X3 Xy s o /Y;\ x0x0x . .

\

~

0 xp x3 x5 « o &

7/(.2\ /_%_\() Xp X Xy o e . .
U 00x,0x;0x ¢ o« U

FIGURE 14.10 Reconstructing the input sequence from its odd and even
components.

The original sequence can be recovered from the two downsampled sequences by insert-
ing Os between consecutive samples of the subsequences, delaying the top branch by one
sample and adding the two together. Adding Os between consecutive samples is called
upsampling and is denoted by 1 M. The reconstruction process is shown in Figure 14.10.

While we have decomposed the source output sequence into two subsequences, there is
no reason for the statistical and spectral properties of these subsequences to be different. As
our objective is to decompose the source output sequences into subsequences with differing
characteristics, there is much more yet to be done.

Generalizing this, we obtain the system shown in Figure 14.11. The source output
sequence is fed to an ideal low-pass filter and an ideal high-pass filter, each with a bandwidth
of w/2. We assume that the source output sequence had a bandwidth of . If the original
source signal was sampled at the Nyquist rate, as the output of the two filters have bandwidths
half that of the original sequence, the filter outputs are actually oversampled by a factor
of two. We can, therefore, subsample these signals by a factor of two without any loss of
information. The two bands now have different characteristics and can be encoded differently.
For the moment let’s assume that the encoding is performed in a lossless manner so that the
reconstructed sequence exactly matches the source output sequence.

440 14 SUBBAND CODING

X Ideal ¥ Ideat
- low-pass % Encoder 1 |—s{ Decoder | —@— low-pass
filter filter

-
I Ideal v Ideal /L v
high-pass _”®__> Encoder 2 b—s{ Decoder 2 I 2 high-pass \—b -

filter filter

FIGURE 14. 11 Decomposition into two bands using ideal filters.

Let us look at how this system operates in the frequency domain. We begin by looking
at the downsampling operation.

14.5.1 Downsampling x

To see the effects of downsampling, we will obtain the Z-transform of the downsampled
sequence in terms of the original source sequence. Because it is easier to understand what is
going on if we can visualize the process, we will use the example of a source sequence that
has the frequence profile shown in Figure 14.12. For this sequence the output of the ideal
filters will have the shape shown in Figure 14.13.

Let’s represent the downsampled sequence as {w,,}. The Z-transform W,(z) of the
downsampled sequence w, , is

Wi(z) =2 w2 (14.24)
The downsampling operation means that

“"l.n = y]jn' (]425)

X(e/®)

/2 n [0V}

FIGURE 14.12 Spectrum of the source output.

14.5 Design of Filter Banks ¥ aa

Y (e/®) Y,(e®)

/2 ® /2 n

€

FIGURE 14. 13 Spectrum of the outputs of the ideal filters.

In order to find the Z-transform of this sequence, we go through a two-step process. Define
the sequence

1 _
Vi 5(1 +e"y (14.26)

Y. heven (14.27)

0 otherwise.

We could also have written Equation (14.26) as

.

7 1 n
Yin = 5(1 +(=1)")y1.,

however, wrjting the relationship as in Equation (14.26) makes it easier to extend this
development to the case where we divide the source output into more than two bands.
The Z-transform of y| , is given as

V@)= ¥ SU+eMy e (14.28)

n=-—oc

Assuming all summations converge,

1= 1 & .
Y@ =3 > Y "3 Y yialzem) (14.29)

n=-0oc n=-—oo

1
= SHE+ 31D (14.30)

442 14 SUBBAND CODING

where we have used the fact that

e™/m =cos(m)— jsinw = —1.
Noting that
Win = y’l,ln (]43])
WI(:) = Z My].n:_n = Z)‘;.Zn‘—' "‘ (]432)
Substituting m = 2n,
Wi(z) = Z)",_,,,:;»‘m {14.33)
= Yl’(:%) (14.34)
1 1 l)
= EY,(ZT)-%EY](—:?). (14.35)

Why didn’t we simply write the Z-transform of w, , directly in terms of ¥1., and use the
substitution m = 2n? If we had, the equivalent equation to (14.33) would contain the odd
indexed terms of y, ., which we know do not appear at the output of the downsampler. In
Equation (14.33), we also get the odd indexed terms of v ,: however, as these terms are all
zero (see Equation (14.26)), they do not contribute to the Z-transform.

Substituting z = ¢ we get

o o1 "
Wie) = SYi(e) + S 1(=e). (14.36)

Plotting this for the ¥, (e/*) of Figure 14.13, we get the spectral shape shown in Figure 14.14;
that is, the spectral shape of the downsampled signal is a stretched version of the spectral
shape of the original signal. A similar situation exists for the downsampled signal Wi,

} W](e/(x))

n/2 n o)

FIGURE 14. 14 Spectrum of the downsampled low-pass filter output.

14.5 Design of Filter Banks % 443

14.5.2 Upsampling »

Let’s take a look now at what happens after the upsampling. The upsampled sequence v, ,
can be written as

W, x 1 even

v, = (14.37)
’ 0 n odd.
The Z-transform V,(z) is thus
Vi) = Y v, (14.38)
= Z wi " n even (14.39)
= 3 Wy (14.40)
= W, (). (14.41)

The spectrum is sketched in Figure 14.15. The “stretching” of the sequence in the
time domain has led to a compression in the frequency domain. This compression has also
resulted in a replication of the spectrum in the [0, 7] interval. This replication effect is called
imaging. We remove the images by using an ideal low-pass filter in the top branch and an
ideal high-pass filter in the bottom branch.

Because the use of the filters prior to sampling reduces the bandwidth, which in turn
allows the downsampling operation to proceed without aliasing, these filters are called anti-
aliasing filters. Because they decompose the source output into components, they are also
called analysis filters. The filters after the upsampling operation are used to recompose the
original signal; therefore. they are called synthesis filters. We can also view these filters as
interpolating between nonzero values to recover the signal at the point that we have inserted
zeros. Therefore, these filters are also called interpolation filters.

Vi(e)

eV

w2 ™

FIGURE 14. 15 Spectrum of the upsampled signal.

444 14 SUBBAND CODING

Although the use of ideal filters would give us perfect reconstruction of the source
output, in practice we do not have ideal filters available. When we use more realistic filters
in place of the ideal filters, we end up introducing distortion. In the next section we look at
this situation and discuss how we can reduce or remove this distortion.

14.6 Perfect Reconstruction Using Two-Channel
Filter Banks x

Suppose we replace the ideal low-pass filter in Figure 14.11 with a more realistic filter with
the magnitude response shown in Figure 14.4. The spectrum of the output of the low-pass
filter is shown in Figure 14.16. Notice that we now have nonzero values for frequencies
above 3. If we now subsample by two, we will end up sampling at less than twice the
highest-frequency‘ or in other words, we will be sampling at below the Nyquist rate. This
will result in the introduction of aliasing distortion, which will show up in the reconstruction.
A similar situation will occur when we replace the ideal high-pass filter with a realistic
high-pass filter.

In order to get perfect reconstruction after synthesis, we need to somehow get rid of
the aliasing and imaging effects. Let us look at the conditions we need to impose upon
the filters H,(z), H.(z), K,(z), and K,(z) in order to accomplish this. These conditions are
called perfect reconstruction (PR) conditions.

Consider Figure 14.17. Let’s obtain an expression for X(z) in terms of H\(2)., H:(2),
K\ (z), and K,(z). We start with the reconstruction:

X(2) = U0+ Uy(2) (14.42)
= Vl(:)Kl(:)+V3(:)K](:)~ (]4.43)

Therefore, we need to find V,(z) and V,(z). The sequence v, , is obtained by upsampling
w; ,. Therefore, from Equation (14.41),

Vi(2) = W (). (14.44)

Vl(t"’m)

/2 [0

FIGURE 14. 16 Ovtput of the low-pass filter.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks % 445

Yin

”I n /I\ Vi Kl((',)
2/

©

Hyzy e @ @ | Kx(2)

FIGURE 14.17 Two-channel subband decimation and interpolation.

The sequence w , is obtained by downsampling v, ,.
Y1(2) = X(2)H, (2).
Therefore, from Equation (14.35),

l t ! | 1 y
W) = 3 [XEDH)+ X (2 H ()] (14.45)
and
Vi) = [X (DH, () + X(—2)H\(-2)]. (14.46)
Similarly, we can also show that
1
V2(2) = 5 [X(D)Hy(2) + X (=) Hy(=2)]. (14.47)
Substituting the expressions for V,(z) and V,(z) into Equation (14.43) we obtain
N]
X(2) = E[H(DK (2)+ Hy(2) K, (2)] X(2)
+ 5[H](—z)K,(:i+Hz(—z)1<3(:)]x<—;). (14.48)

For perfect reconstruction we would like)A((:) to be a delayed and perhaps amplitude-
scaled version of X(z); that is,

X(2)=cX(z)z ™. (14.49)

In order for this to be true, we need to impose conditions on H,(z), H,(z). K,(z). and K,(z).
There are several ways we can do this. with each approach providing a different solution.
One approach involves writing Equation (14.48) in matrix form as

v = LTk (o) Ko 1 Q) HED T XG)
X@)=3[K6G) K:(*.)]{Hz(z) Hz(_:)] [X(_:J (14.50)
For perfect reconstruction, we need

H/((z) H(-2) o
Hy(2) H;(—:)]“[“ 0] (14.51)

446 14 SUBBAND CODING

where we have absorbed the factor of
filters K,(z) and X,(z) satisfy

into the constant ¢. This means that the synthesis

(ST

——
cZ 0

[Kl(i) K:(C)]Zm[}']z(*z) —H,(—z)] (14.52)
where
H(z) = [ﬁ‘ﬁi Z'(:” (14.53)

If H,(z) and/or H,(z) are IIR filters. the reconstruction filters can become quite complex.
Therefore, we would like to have both the analysis and synthesis filters be FIR filters. If we
select the analysis filters to be FIR, then in order to guarantee that the synthesis filters are
also FIR we need

det[F ()] = y=™"
where v is a constant. Examining det[J{(:\)]
det[F(2)] = H,(2)Hy(=2) — H (=) H,(2)
P(z) = P(=2)=vy™" (14.54)

where P(z) = H,(z)H.(—z). If we examine Equation (14.54). we can see that », has to
be odd because all terms containing even powers of 7 in P(Z) will be canceled out by the
corresponding terms in P(—z). Thus, P(2) can have an arbitrary number of even-indexed
coefficients (as they will get canceled out), but there must be only one nonzero coefficient
of an odd power of z. By choosing any valid factorization of the form

P(2) =P (2)P(2) (14.55)
we can obtain many possible solutions of perfect reconstruction FIR filter banks with
H\(2)=P\(2) (14.56)
and
Hy(z) = Py(—2). (14.57)

Although these filters are perfect reconstruction filters, for applications in data compression
they suffer from one significant drawback. Because these filters may be of unequal band-
width, the output of the larger bandwidth filter suffers from severe aliasing. If the output of
both bands is available to the receiver, this is not a problem because the aliasing is canceled
out in the reconstruction process. However, in many compression applications we discard
the subband containing the least amount of energy, which will generally be the output of
the filter with the smaller bandwidth. In this case the reconstruction will contain a large
amount of aliasing distortion. In order to avoid this problem for compression applications,
we generally wish to minimize the amount of aliasing in each subband. A class of filters that
is useful in this situation is the quadrature mirror filters (QMF). We look at these filters in
the next section.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks % 447

14.6.1 Two-Channel PR Quadrature Mirror
Filters «x

Before we introduce the quadrature mirror filters. let’s rewrite Equation (14.48) as

X(2) = T(2)X(2) + S(2)X(~2) (14.58)
where
1
T) = 5 [H(K () + H()K:(2)] (14.59)
|
S(@) = 5 (=K () + H(=2) K> (2)]. (14.60)

In order for the reconstruction of the input sequence {x,} to be a delayed, and perhaps
scaled, version of {x,}, we need to get rid of the aliasing term X(—z) and have T(z) be a
pure delay. To get rid of the aliasing term, we need

S(z) =0, vz,

From Equation (14.60), this will happen if
K\(z) = Hy(-2) (14.61)
K.(z) = =H,(-2). (14.62)

After removing the aliasing distortion, a delayed version of the input will be available
at the output if

T(z)=cz™™ ¢ is a constant. (14.63)
Replacing z by ¢/, this means that we want

|T(¢™)| = constant (14.64)
arg(T(e’”)) = Kw K constant. (14.65)

The first requirement eliminates amplitude distortion, while the second, the linear phase
requirement, is necessary to eliminate phase distortion. If these requirements are satisfied,

x(n) = ex(n —ny). (14.66)

That is, the reconstructed signal is a delayed version of input signal x(n). However, meeting
both requirements simultaneously is not a trivial task.

Consider the problem of designing 7(z) to have linear phase. Substituting (14.61) and
(14.62) into Equation (14.59). we obtain

T(2) = 5[y Hs(~2) ~ Hy () ()] (14.67)

448 14 SUBBAND CODING

Therefore, if we choose H,(z) and H,(z) to be linear phase FIR, T(z) will also be a linear
phase FIR filter. In the QMF approach, we first select the low-pass filtér H,(z), then define
the high-pass filter /,(z) to be a mirror image of the low-pass filter:

Ha(2) = H,(~2). (14.68)

This is referred to as a mirror condition and is the original reason for the name of the QMF
filters [200]. We can see that this condition will force both filters to have equal bandwidth.

Given the mirror condition and H|(z). a linear phase FIR filter, we will have linear phase
and

| ;
T(z) = 5|H{ (2) = Hi (=2)]. (14.69)
It is not clear that [T(e/*)| is a constant. In fact, we will show in Section 14.8 that a linear
phase two-channel FIR QMF bank with the filters chosen as in Equation (14.68) can have

PR property if and only if H,(z) is in the simple two-tap form

H () = hoz 0 4 by 730D, (14.70)

Then, T(z) is given by
T(2) = 2hyh, 7~ FRot2+D (14.71)
which is of the desired form c¢z"0. However, if we look at the magnitude characteristics

of the two filters, we see that they have poor cutoff characteristics. The magnitude of the
low-pass filter is given by

|H\(e)|" = 12+ h2 + 2hoh, cos(2k, — 2k, — Do (14.72)
and the high-pass filter is given by
|Hy ()" = b2 + 12 — 2hoh, cos(2ky — 2k, — Dw. (14.73)

For hy = h| =k, =k, = 1, the magnitude responses are plotied in Figure 14.18. Notice the
poor cutoff characteristics of these two filters.

Thus, for perfect reconstruction with no aliasing and no amplitude or phase distortion,
the mirror condition does not seem like such a good idea. However, if we slightly relax
these rather strict conditions, we can obtain some very nice designs. For example, instead of
attempting to eliminate all phase and amplitude distortion, we could elect to eliminate only
the phase distortion and minimize the amplitude distortion. We can optimize the coefficients
of H,(z) such that |T(e’*)| is made as close to a constant as possible, while minimizing
the stopband energy of H,(z) in order to have a good low-pass characteristic. Such an
optimization has been suggested by Johnston [198] and Jain and Crochiere [202]. They
construct the objective function

Hdw (14.74)

J:a/“IH,(efw)Vdel —a)/oﬂ(l — |T(e™)

which has to be minimized to obtain H,(z) and T,(z), where w, is the cutoff frequency of
the filter.

14.6 Perfect Reconstruction Using Two-Channel Filter Banks % 449

Magnitude (dB)

-30 | l T T
0 0.5 1 1.5 2 2.5 3
Frequency

FIGURE 14. 18 Magnitude characteristics of the two-tap PR filters.

We can also go the other way and eliminate the amplitude distortion, then attempt to
minimize the phase distortion. A review of these approaches can be found in [201, 200].

14.6.2 Power Symmetric FIR Filters «

Another approach, independently discovered by Smith and Barnwell [199] and Mintzer
[203], can be used to design a two-channel filter bank in which aliasing, amplitude distortion,
and phase distortion can be completely eliminated. As discussed earlier, choosing

K\(z) = —H,(—2)
Ky(z) = H\(-2) (14.75)
eliminates aliasing. This leaves us with

T(0) = S U= Ha(2) ~ Hy () H(~2)].

In the approach due to Smith and Barnwell [199] and Mintzer [203], with N an odd integer,
we select

Hy(z)=z""H\(-z7") (14.76)

450 14 SUBBAND CODING

so that

T(z)= =z “[H{QH, (" Y+ H(-2)H (-] (14.77)

19 —

Therefore, the perfect reconstruction requirement reduces to finding a prototype low-pass
filter H(z) = H,(z) such that

Q(z) = H(z)H(z™") + H(~:)H(—z"") = constant. (14.78)
Defining
R(z)=H()HE). (14.79)
the perfect reconstruction requirement becomes
Q(z) = R(z) + R(—z) = constant. {14.80)

But R(z) is simply the Z-transform of the autocorrelation sequence of /i(n). The auto-
correlation sequence p(n) is given by

N
p(n) =Y hh,,. (14.81)
k=0
The Z-transform of p(n) is given by
N
R(z) = Z[p(n)]=2 l:Z hxhunj| . (14.82)
k=0
We can express the sum 3" A, h, ., as a convolution:
N
h,®h_, =3 hh,,. {14.83)
k=0

Using the fact that the Z-transform of a convolution of two sequences is the product of the
Z-transforms of the individual sequences. we obtain

R(:) = 2[h,12[h_,) = HEHE). (14.84)
Writing out R(z) as the Z-transform of the sequence {p(n)} we obtain
R(z) =p(N)" +p(N = D" "+ +p0) +- +p(N = 1z7" " +p(M:z™". (14.85)
Then R(-2) is
R(=2)=—pM:"+p(N=1)" "= 4p(0) = +p(N =Dz —p(N):z". (14.86)
Adding R(z) and R(—:). we obtain Q(z) as

0(2)=2p(N—=1)z"""+2p(N=1)" 4+ +p0) +-- +2p(N=1)z7"". (14.87)

14.7 M-Band QMF Filter Banks % 451

Notice that the terms containing the odd powers of 7 got canceled out. Thus, tor Q(z)
to be a constant all we need is that for even values of the lag n (except for n = 0). p(n) be
zero. In other words

N
p(2n) =Y hoh, .o, = 0. n#0. (14.88)

k=0

Writing this requirement in terms of the impulse response:

il 0 0
lelill‘\'ZJI = " # (]489]
pyard p(0) n=0.
If we now normalize the impulse response.
N .
Yol =1 (14.90)
k=0
we obtain the perfect reconstruction requirement
N
Yo, =39, (14.91)

£=0

In other words. for perfect reconstruction, the impulse response of the prototype filter is
orthogonal to the twice-shifted version of itself.

14.7 M-Band QMF Filter Banks x

We have looked at how we can decompose an input signal into two bands. In many
applications it is necessary to divide the input into multiple bands. We can do this by using
a recursive two-band splitting as shown in Figure 14.19. or we can obtain banks of filters
that directly split the input into multiple bands. Given that we have good filters that provide
two-band splitting. it would seem that using d recursive splitting. as shown in Figure 14.19,
would be an efficient way of obtaining an M-band split. Unfortunately, even when the
spectral characteristics of the filters used for the two-band split are quite good, when we
employ them in the tree structure shown in Figure 14.19. the spectral characteristics may
not be very good. For example. consider the four-tap filter with filter coefficients shown in
Table 14.6. In Figure 14.20 we show what happens to the spectral characteristics when we
look at the two-band split (at point A in Figure 14.19). the four-band split (at point B in
Figure 14.19), and the eight-band split (at point C in Figure 14.19). For a two-band split the
magnitude characteristic is flat, with some aliasing. When we employ these same filters to
obtain a four-band split from the two-band split, there is an increase in the aliasing. When
we go one step further to obtain an eight-band split, the magnitude characteristics deteriorate
substantially. as evidenced by Figure 14.20. The various bands are no longer clearly distinct.
There is significant overlap-between the bands. and hence there will be a significant amount
of aliasing in each band.

In order to see why there is an increase in distortion. let us follow the top branch of
the tree. The path followed by the signal is shown in Figure 14.21a. As we will show later

452 14 SUBBAND CODI!ING

A B C
Low-pass
filter
Low-pass High-pass
filter filter |
___| Low-pass
; filter Lowpass | |
' filter ;
' ' ‘ |
t B H .
! High-pass : High-pass :
: r filter ; filter ;
' : :
S |
! : :
X ; ‘Low-pass | Low-pass .3
! filter : filter
t !
X :
i - High-pass :
_ _| High-pass filter | &
filter :
High-pass Low-pass |
filter filter
High-pass | |
filter i

FIGURE 14. 19 Decomposition of an input sequence into multiple bands by
recursively using a ftwo-band split.

TABLE 14.6 Coefficients for the four-tap
Daubechies low-pass filter.

h, 0.4829629131445341
h, 0.8365163037378079
h, 0.2241438680420134
hy —0.1294095225512604

(Section 14.8), the three filters and downsamplers can be replaced by a single filter and
downsampler as shown in Figure 14.21b. where

A(z) = H, (2)H, () H, (). (14.92)

If H,(z) corresponds to a 4-tap filter, then A(z) corresponds to a 3 x 6 x 12 = 216-tap
filter! However, this is a severely constrained filter because it was generated using only

14.7 M-Band QMF Filter Banks %

453

Magnitude

" Magnitude

Magnitude

1.5

Eight-band

FIGURE 14. 20 Spectral characteristics at points A, B, and C.

Hl.(:) > (:) > HL(Z)

__.@_. H) ‘.@_.

— A

(b)

-(18)
o/

FIGURE 14. 21 Equivalent structures for recursive filtering using a two-band split.

454 14 SUBBAND CODING

four coetficients. If we had set out to design a 216-tap filter from scratch. we would have
had significantly more freedom in selecting the coefficients. This is a strong motivation for
designing filters directly for the M-band case.

An M-band filter bank has two sets of filters that are arranged as shown in Figure 14.7.
The input signal x(n) is split into M frequency bands using an analysis bank of M filters of
bandwidth /M. The signal in any of these M channels is then downsampled by a factor L.
This constitutes the analysis bank. The subband signals v, (1) are encoded and transmitted.
At the synthesis stage the subband signals are then decoded. upsampled by a factor of L
by interlacing adjacent samples with L — 1 zeros, and then passed through the synthesis
or interpolation filters. The output of all these synthesis filters is added together to obtain
the reconstructed signal. This constitutes the synthesis filter bank. Thus. the analysis and
synthesis filter banks together take an input signal x{n) and produce an output signal ¥(n).
These filters could be any combination of FIR and IIR filters.

Depending on whether M is less than, equal to. or greater than L. the filter bank is called
an underdecimated, critically (maximally) decimated. or overdecimated filter bank. For most
practical applications, maximal decimation or “critical subsampling™ is used.

A detailed study of M-band filters is beyond the scope of this chapter. Suffice it to say
that in broad outline much of what we said about two-band filters can be generalized to
M-band filters. (For more on this subject. see [200].)

14.8 The Polyphase Decomposition x«

A major problem with representing the combination of filters and downsamplers is the
time-varying nature of the up- and downsamplers. An elegant way of solving this problem
is with the use of polyphase decomposition. In order to demonstrate this concept. let us first
consider the simple case of two-band splitting. We will first consider the analysis portion of
the system shown in Figure 14.22. Suppose the analysis filter H,(Z) is given by

H(Z)=hyth "+ has "+ (14.93)
By grouping the odd and even terms together, we can write this as

Hi(2) = (hy+hz +hzs)by + s+ gz 40, (14.94)

el H](:) Ll

&)

\

=

\
®

FIGURE 14, 22 Analysis portion of a two-band subband coder.

14.8 The Polyphase Decomposition % 455

Define

Hyo(z) = hg+has "4 hys 4 (14.95)
H () = hy+hyz +hs 24 (14.96)

Then H,(z) = H,,(z*) + 27 'H,,(z*). Similarly, we can decompose the filter H,(z) into
components H,,(z) and H,,(z), and we can represent the system of Figure 14.22 as shown
in Figure 14.23. The filters H,,(z)~H,,(z) and H.,(z), H. (2) are called the polyphase
components of H,(z) and H,(z).

Let’s take the inverse Z-transform of the polyphase components of H,(z):

hyo(n) = hs, n=0.1,... (14.97)
hy(n) = hypy n=0,1,... (14.98)
Thus, h,,(n) and h,,(n) are simply the impulse response A, downsampled by two. Consider

the output of the downsampler for a given input X(z). The input to the downsampler is
X(z)H,(z): thus, the output from Equation (14.35) is

yl(:)zéx(;%)ﬂl (;%)+%x(—:!)n, (=<4). (14.99)

ya

,L
®

0
N

7]

= H;(2)

> Hyy(3) =® @
=]

= H, (2)

FIGURE 14. 23 Alternative representation of the analysis portion of a two-band
subband coder.

456 14 SUBBAND CODING

Replacing H,(z) with its polyphase representation, we get

Y (2) = %X(zl) I:Hlo(l)'f‘lf%ﬂn(z)]“'%X(—Zé) [HIO(Z)"ZA%HII(Z)] (14.100)
= Ho@ [53 () + 33 (=) |+ i@ | 5o x () 3ot (=)

(14.101)

Note that the first expression in square brackets is the output of a downsampler whose
input is X(z), while the quantity in the second set of square brackets is the output of a
downsampler whose input is z~' X(z). Therefore, we could implement this system as shown
in Figure 14.24.

Now let us consider the synthesis portion of the two-band system shown in Figure 14.25.
As in the case of the analysis portion, we can write the transfer functions in terms of their
polyphase representation. Thus,

Gi(z) = Gyp(*) +27'G,,(2) (14.102)
G(2) = Gy(P) +27'G, (D). (14.103)

Consider the output of the synthesis filter G, (z) given an input Y,(z). From Equation (14.41),
the output of the upsampler is

Uy(2) = Y,(2%) (14.104)

—@ H(2) v/—i——\
=]

»@— H,, ()

@ Hyy(2) —Cf—\
]
@ H,,(2)

FIGURE 14. 24 Polyphase representation of the analysis portion of a two-band
subband coder.

14.8 The Polyphase Decomposition % 7 457

‘>®—> Gy(2)

FIGURE 14. 25 The synthesis portion of a two-band subband coder.

and the output of G,(2) is
Vi(z) = 1,(z)G(2) (14.105)
= Y(£)G () +27'1 ()G, (2). (14.106)

The first term in the equation above is the output of an upsampler that follows a filter
with transfer function G,,(z) with input ¥(z). Similarly, ¥,(z*)G,,(z?) is the output of an
upsampler that follows a filter with transfer function G,,(z) with input ¥(z). Thus, this
system can be represented as shown in Figure 14.26.

Putting the polyphase representations of the analysis and synthesis portions together, we
get the system shown in Figure 14.27. Looking at the portion in the dashed box, we can see
that this is a completely linear time-invariant system.

/‘\ m
b G]()(:) + +
‘G \\‘/

= G @

= Gy(2)

> G:](:)

[2
©
®

FIGURE 14. 26 Polyphase representation of the synthesis portion of a two-band
subband coder.

458 14 SUBBAND CODING

Gl o)

/l—’\ 5 H.(: C-*—\

FIGURE 14. 27 Polyphase representation of the two-band subband coder.

The polyphase representation can be a very useful tool for the design and analysis
of filters. While many of its uses are beyond the scope of this chapter. we can use this
representation to prove our statement about the two-band perfect reconstruction QMF filters.

Recall that we want

|
T(z) = ;[HI(:)HZ(—:) —H(—2)H\ ()] =cz7™.

If we impose the mirror condition H,(2) = H,(—z). T(z) becomes

T(z) = < [H (2) = H{(-2)]. (14.107)

19|

The polyphase decomposition of H,(2) is
H(z)=H)+ "H, ().
Substituting this into Equation (14.107) for H,(z) and
H\(=2) = Hy(z) — 2 'H (2)
for H,(—z), we obtain
T(z) =227 'H, () H,, (2). (14.108)

Clearly, the only way 7(z) can have the form ¢z~ is if both H,,(z) and H,,(c) are simple
delays; that is,

Hip(2) = hyz™™ (14.109)
H,(z) = hz™". (14.110)

14.9 Bit Allocation 459

This results in
T(z) = 2hoh, ;= e+t (14.111)
which is of the form cz™™ as desired. The resulting filters have the transfer functions

H\(2) = hoz o4 g7 ChD (14.112)
Hy(z) = hoz 720 — h 20D, (14.113)

14.9 Bit Allocation

Once we have separated the source output into the constituent sequences, we need to decide
how much of the coding resource should be used to encode the output of each synthesis
filter. In other words. we need to allocate the available bits between the subband sequences.
In the previous chapter we described a bit allocation procedure that uses the variances of
the transform coefficient. In this section we describe a bit allocation approach that attempts
to use as much information about the subbands as possible to distribute the bits.

Let’s begin with some notation. We have a total of B bits that we need to distribute
among M subbands. Suppose R corresponds to the average rate in bits per sample for the
overall system, and R, is the average rate for subband k. Let’s begin with the case where
the input is decomposed into M equal bands, each of which is decimated by a factor of M.
Finally, let’s assume that we know the rate distortion function for each band. (If you recall
from Chapter 8. this is a rather strong assumption and we will relax it shortly.) We also
assume that the distortion measure is such that the total distortion is the sum of the distortion
contribution of each band.

We want to find the bit allocation R, such that

M
R=L3 R, (14.114)

M k=t
and the reconstruction error is minimized. Each value of R, corresponds to a point on the
rate distortion curve. The question is where on the rate distortion curve for each subband
should we operate to minimize the average distortion. There is a trade-off between rate and
distortion. If we decrease the rate (that is, move down the rate distortion curve), we will
increase the distortion. Similarly, if we want to move to the left on the rate distortion curve
and minimize the distortion, we end up increasing the rate. We need a formulation that
incorporates both rate and distortion and the trade-off involved. The formulation we use is
based on a landmark paper in 1988 by Yaacov Shoham and Allen Gersho [204]. Let’s define

a functional J,:

J, =D, +\R, (14.115)

where D, is the distortion contribution from the kth subband and X is a Lagrangian parameter.
This is the quantity we wish to minimize. In this expression the parameter \ in some sense
specifies the trade-off. If we are primarily interested in minimizing the distortion, we can
set A to a small value. If our primary interest is in minimizing the rate, we keep the value of

460 14 SUBBAND CODING

A large. We can show that the values of D, and R, that minimize J, occur where the slope
of the rate distortion curve is A. Thus, given a value of A and the rate distortion function,
we can immediately identify the values of R, and D,. So what should the value of X be, and
how should it vary between subbands?

Let’s take the second question first. We would like to allocate bits in such a way that
any increase in any of the rates will have the same impact on the distortion. This will
happen when we pick R, in such a way that the slopes of the rate distortion functions for
the different subbands are the same; that is, we want to use the same A\ for each subband.
Let’s see what happens if we do not. Consider the two rate distortion functions shown in
Figure 14.28. Suppose the points marked x on the rate distortion functions correspond to
the selected rates. Obviously, the slopes, and hence the values of A, are different in the two
cases. Because of the differences in the slope, an increase by AR in the rate R, will result
in a much larger decrease in the distortion than the increase in distortion if we decreased R,
by AR. Because the total distortion is the sum of the individual distortions, we can therefore
reduce the overall distortions by increasing R, and decreasing R,. We will be able to keep
doing this until the slope corresponding to the rates are the same in both cases. Thus, the
answer to our second question is that we want to use the same value of A for all the subbands.

Given a set of rate distortion functions and a value of A, we automatically get a set of
rates R,. We can then compute the average and check if it satisfieies our constraint on the
total number of bits we can spend. If it does not, we modify the value of \ until we get a
set of rates that satisfies our rate constraint.

However, generally we do not have rate distortion functions available. In these cases we
use whatever is available. For some cases we might have operational rate distortion curves
available. By “operational” we mean performance curves for particular types of encoders
operating on specific types of sources. For example, if we knew we were going to be using
pdf-optimized nonuniform quantizers with entropy coding, we could estimate the distribution
of the subband and use the performance curve for pdf-optimized nonuniform quantizers for

Rate Rate R} -

Distortion Distortion

FIGURE 14. 28 Two rate distortion functions.

14.10 Application to Speech Coding—G.722 461

that distribution. We might only have the performance of the particular encoding scheme
for a limited number of rates. In this case we need to have some way of obtaining the slope
from a few points. We could estimate this numerically from these points. Or we could fit
the points to a curve and estimate the slope from the curve. In these cases we might not be
able to get exactly the average rate we wanted.

Finally, we have been talking about a situation where the number of samples in each
subband is exactly the same, and therefore the total rate is simply the sum of the individual
rates. If this is not true, we need to weight the rates of the individual subbands. The functional
to be minimized becomes

J=Y"D,+\ Y BR, (14.116)

where 8, is the weight reflecting the relative length of the sequence generated by the kth
filter. The distortion contribution from each subband might not be equally relevant, perhaps
because of the fi'ter construction or because of the perceptual weight attached to those
frequencies [20%]. In these cases we can modify our functional still further to include the
unequal weighting of the distortion:

J =Y w.D, + Y BiR,. (14.117)

14.10 Application to Speech Coding—6.722

The ITU-T recommendation G.722 provides a technique for wideband coding of speech
signals that is based on subband coding. The basic objective of this recommendation is to
provide high-quality speech at 64 kbits per second (kbps). The recommendation also contains
two other modes that encode the input at 56 and 48 kbps. These two modes are used when
an auxiliary channel is needed. The first mode provides for an auxiliary channel of 8 kbps;
the second mode, for an auxiliary channel of 16 kbps.

The speech output or audio signal is filtered to 7kHz to prevent aliasing, then sampled
at 16,000 samples per second. Notice that the cutoff frequency for the anti-aliasing filter is
7kHz, not 8kHz, even though we are sampling at 16,000 samples per second. One reason
for this is that the cutoff for the anti-aliasing filter is not going to be sharp like that of the
ideal low-pass filter. Therefore, the highest frequency component in the filter output will be
greater than 7kHz. Each sample is encoded using a 14-bit uniform quantizer. This 14-bit
input is passed through a bank of two 24-coefficient FIR filters. The coefficients of the
low-pass QMF filter are shown in Table 14.7.

The coefficients for the high-pass QMF filter can be obtained by the relationship

hupn = (=1)"hpp,. (14.118)

The low-pass filter passes all frequency components in the range of 0 to 4 kHz, while the
high-pass filter passes all remaining frequencies. The output of the filters is downsampled by
a factor of two. The downsampled sequences are encoded using adaptive differential PCM
(ADPCM) systems.

The ADPCM system that encodes the downsampled output of the low-frequency filter
uses 6 bits per sample, with the option of dropping 1 or 2 least significant bits in order to

462 14 SUBBAND CODING

TABLE 14.7 Transmit and receive

QMF coefficient valves.
hg, hy3 3.66211 x 107*
hy, hy, —1.34277 x 1073
hy, by —1.34277 x 10~3
hy, by 6.46973 x 1073
hy, hyg 1.46484 x 1073
hs, hyg —1.90430 x 1072
hg, hyq 3.90625 x 103
hq, hyg 4.41895 x 102
hg. hys ~2.56348 x 1072
hg, hy4 —9.82666 x 1072
hygs hys 1.16089 x 107!
hyys by 4.73145 x 107!

provide room for the auxiliary channel. The output of the high-pass filter is encoded using 2
bits per sample. Because the 2 least significant bits of the quantizer output of the low-pass
ADPCM system could be dropped and then not available to the receiver, the adaptation
and prediction at both the transmitter and receiver are performed using only the 4 most
significant bits of the quantizer output.

If all 6 bits are used in the encoding of the low-frequency subband, we end up with a rate
of 48 kbps for the low band. Since the high band is encoded at 2 bits per sample, the output
rate for the high subband is 16 kbps. Therefore, the total output rate for the subband-ADPCM
system is 64 kbps.

The quantizer is adapted using a variation of the Jayant algorithm [110]. Both ADPCM
systems use the past tworeconstructed values and the past six quantizer outputs to predict the next
sample, in the same way as the predictor for recommendation G.726 described in Chapter 11.
The predictor is adapted in the same manner as the predictor used in the G.726 algorithm.

At the receiver, after being decoded by the ADPCM decoder, each output signal is
upsampled by the insertion of a zero after each sample. The upsampled signals are passed
through the reconstruction filters. These filters are identical to the filters used for decompos-
ing the signal. The low-pass reconstruction filter coefficients are given in Table 14.7, and
the coefficients for the high-pass filter can be obtained using Equation (14.118).

14.11 Application to Audio Coding— MPEG Avudio

The Moving Picture Experts Group (MPEG) has proposed an audio coding scheme that
is based in part on subband coding. Actually, MPEG has proposed three coding schemes,
called Layer I, Layer II, and Layer IlI coding. Each is more complex than the previous and
provides higher compression. The coders are also “upward” compatible; a Layer N decoder
is able to decode the bitstream generated by the Layer N — 1 encoder. In this section we will
look primarily at the Layer 1 and Layer 2 coders.

The Layer 1 and Layer 2 coders both use a bank of 32 filters, splitting the input into
32 bands, each with a bandwidth of f,/64, where f, is the sampling frequency. Allowable

14.12 Application to Image Compression 463

sampling frequencies are 32,000 samples per second, 44,100 samples per second, and 48,000
samples per second. Details of these coders are provided in Chapter 16.

14.12 Application to Image Compression

We have discussed how to separate a sequence into its components. However, all the exam-
ples we have used are one-dimensional sequences. What do we do when the sequences
contain two-dimensional dependencies such as images? The obvious answer is that we need
two-dimensional filters that separate the source output into components based on both the hor-
izontal and vertical frequencies. Fortunately, in most cases, this two-dimensional filter can be
implemented as two one-dimensional filters, which can be applied first in one dimension, then
in the other. Filters that have this property are called separable filters. Two-dimensional non-
separable filters do exist [206]; however, the gains are offset by the increase in complexity.

Generally, for subband coding of images we filter each row of the image separately using
a high-pass and low-pass filter. The output of the filters is decimated by a factor of two.
Assume that the images were of size N x N. After this first stage, we will have two images
of size N x % We then filter each column of the two subimages, decimating the outputs of
the filters again by a factor of two. This results in four images of size /_2v_ X % We can stop
at this point or continue the decomposition process with one or more of the four subimages,
resulting in 7, 10, 13, or 16 images. Generally, of the four original subimages, only one or
two are further decomposed. The reason for not decomposing the other subimages is that
many of the pixel values in the high-frequency subimages are close to zero. Thus, there is
little reason to spend computational power to decompose these subimages.

Example 14.12.1:

Let’s take the “image” in Table,14.8 and decompose it using the low-pass and high-pass
filters of Example 14.2.1. After filtering each row with the low-pass filter, the output is
decimated by a factor of two. Each output from the filter depends on the current input and
the past input. For the very first input (that is, the pixels at the left edge of the image),
we will assume that the past values of the input were zero. The decimated output of the
low-pass and high-pass filters is shown in Table 14.9.

We take each of these subimages and filter them column by column using the low-pass
and high-pass filters and decimate the outputs by two. In this case, the first input to the filters

TABLE 14.8 A sample “image.”

10 14 10 12 14 8 14 12
10 12 8 12 10 6 10 12
12 10 8 6 8 10 12 14
8 6 4 6 4 6 8 10
14 12 0 8 6 4 6 8
12 8 12 10 6 6 6 6
12 10 6 6 6 6 6 6
6 6 6 6 6 6 6 6

464 14 SUBBAND CODING

TABLE 14.9 Filtered and decimated ovtput.

Decimated Decimated
Low-Pass Output High-Pass Output

5 12 13 11 5 -2 1 3

5 10 11 8 5 -2 -1 2

6 9 7 11 6 -1 1 1

4 5 5 7 4 —1 -1 1

7 11 7 5 7 —1 -1 1

6 10 8 6 6 2 -2 0

6 8 6 6 6 -2 0 0

3 6 6 6 3 0 0 0

TABLE 14.10 Four subimages.
Low-Low Image Low-High Image
25 6 6.5 55 25 6 6.5 55
5.5 9.5 9 9.5 0.5 —0.5 -2 1.5
5.5 8 6 6 1.5 3 1 -1
6 9 7 6 0 -1 -1 0
High-Low Image High-High Image

2.5 -1 0.5 1.5 2.5 -1 0.5 1.5
5.5 —1.5 0 1.5 0.5 0.5 1 -0.5
5.5 -1 —1 1 1.5 0 0 0
6 0 -1 0 0 =2 1 0

is the top element in each row. We assume that there is a zero row of pixels right above this
row in order to provide the filter with “past” values. After filtering and decimation, we get
four subimages (Table 14.10). The subimage obtained by low-pass filtering of the columns
of the subimage (which was the output of the row low-pass filtering) is called the low-low
(LL) image. Similarly, the other images are called the low-high (LH), high-low (HL), and
high-high (HH) images. ¢

If we look closely at the final set of subimages in the previous example, we notice that
there is a difference in the characteristics of the values in the left or top row and the interiors
of some of the subimages. For example, in the high-low subimage, the values in the first
column are significantly larger than the other values in the subimage. Similarly, in the low-
high subimage, the values in the first row are generally very different than the other values
in the subimage. The reason for this variance is our assumption that the “past” of the image
above the first row and to the left of the column was zero. The difference between zero and
the image values was much larger than the normal pixel-to-pixel differences. Therefore, we
ended up adding some spurious structure to the image reflected in the subimages. Generally,
this is undesirable because it is easier to select appropriate compression schemes when the
characteristics of the subimages are as uniform as possible. For example, if we did not have

14.12 Application to Image Compression 465

TABLE 14.11 Alternate four subimages.

Low-Low Image Low-High Image
10 12 13 11 0 0 -0.5 -0.5
11 9.5 9 9.5 1 -0.5 -2 1.5
11 8 6 6 3 3 1 -1
12 9 7 6 0o -1 -1 0
High-Low Image High-High Image
) 1 3 0 0 0 0
0 -1.5 0 1.5 0 0.5 1 -0.5
0 -1 -1 1 0 0 0 0
0 0 -1 0 0o -2 1 0

the relatively large values in the first column of the high-low subimage, we could choose a
quantizer with a smaller step size.

In this example, this effect was limited to a single row or column because the filters used
a single past value. However, most filters use a substantially larger number of past values
in the filtering operation, and a larger portion of the subimage is affected.

We can avoid this problem by assuming a different “past.” There are a number of ways
this can be done. A simple method that works well is to reflect the values of the pixels at
the boundary. For example, for the sequence 6 954 7 2 -- -, which was to be filtered with a
three-tap filter, we would assume the past as 695472... If we use this approach
for the image in Example 14.12.1, the four subimages would be as shown in Table 14.11.

Notice how much sparser each image is, except for the low-low image. Most of the
energy in the original image has been compacted into the low-low image. Since the other
subimages have very few values that need to be encoded, we can devote most of our
resources to the low-low subimage.

14.12.1 Decomposing an Image

Earlier a set of filters was provided to be used in one-dimensional subband coding. We can
use those same filters to decompose an image into its subbands.

Example 14.12.2:

Let's use the eight-tap Johnston filter to decompose the Sinan image into four subbands.
The results of the decomposition are shown in Figure 14.29. Notice that, as in the case of
the image in Example 14.12.1, most of the signal energy is concentrated in the low-low
subimage. However, there remains a substantial amount of energy in the higher bands. To
see this more clearly, let’s look at the decomposition using the 16-tap Johnston filter. The
results are shown in Figure 14.30. Notice how much less energy there is in the higher

466 14 SUBBAND CODING

FIGURE 14. 29 Decomposition of Sinan image using the eight-tap Johnston filter.

FIGURE 14. 30 Decomposition of Sinan image using the 16-tap Johnston filter.

14.12 Application to Image Compression 467

subbands. In fact, the high-high subband seems completely empty. As we shall see later,
this difference in energy compaction can have a drastic effect on the reconstruction.

FIGURE 14. 31 Decomposition of Sinan image using the the eight-tap
Smith-Barnwell filter.

Increasing the size of the filter is not necessarily the only way of improving the energy
compaction. Figure 14.31 shows the decomposition obtained using the eight-tap Smith-
Bamnwell filter. The results are almost identical to the 16-tap Johnston filter. Therefore,
rather than increase the computational load by going to a 16-tap filter, we can keep the same
computational load and simply use a different filter. ¢

14.12.2 Coding the Subbands

Once we have decomposed an image into subbands, we need to find the best encoding
scheme to use with each subband. The coding schemes we have studied to date are scalar
quantization, vector quantization, and differential encoding. Let us encode some of the
decomposed images from the previous section using two of the coding schemes we have
studied earlier, scalar quantization and differential encoding.

Example 14.12.3:

In the previous example we noted the fact that the eight-tap Johnston filter did not compact
the energy as well as the 16-tap Johnston filter or the eight-tap Smith-Barnwell filter. Let’s
see how this affects the encoding of the decomposed images.

468 14 SUBBAND CODING

When we encode these images at an average rate of 0.5 bits per pixel, there are 4 x 0.5 =2
bits available to encode four values, one value from each of the four subbands. If we use
the recursive bit allocation procedure on the eight-tap Johnston filter outputs, we end up
allocating 1 bit to the low-low band and 1 bit to the high-low band. As the pixel-to-pixel
difference in the low-low band is quite small, we use a DPCM encoder for the low-low band.
The high-low band does not show this behavior, which means we can simply use scalar
quantization for the high-low band. As there are no bits available to encode the other two
bands, these bands can be discarded. This results in the image shown in Figure 14.32, which
is far from pleasing. However, if we use the same compression approach with the image
decomposed using the eight-tap Smith-Barnwell filter, the result is Figure 14.33, which is
much more pleasing.

FIGURE 14, 32 Sinan image coded at 0.5 bits per pixel using the olight-tap
Johnston filter.

To understand why we get such different results from using the two filters, we need to
look at the way the bits were allocated to the different bands. In this implementation, we
used the recursive bit allocation algorithm. In the image decomposed using the Johnston
filter, there was significant energy in the high-low band. The algorithm allocated 1 bit to
the low-low band and 1 bit to the high-low band. This resulted in poor encoding for both,
and subsequently poor reconstruction. There was very little signal content in any of the
bands other than the low-low band for the image decomposed using the Smith-Barnwell
filter. Therefore, the bit allocation algorithm assigned both bits to the low-low band which
provided a reasonable reconstruction.

14.12 Application to Image Compression 469

FIGURE 14. 33 Sinan image coded at 0.5 bits per pixel using the eight-tap
Smith-Barnwell filter.

If the problem with the encoding of the image decomposed by the Johnston filter is an
insufficient number of bits for encoding the low-low band, why not simply assign both bits
to the low-low band? The problem is that the bit allocation scheme assigned a bit to the
high-low band because there was a significant amount of information in that band. If both
bits were assigned to the low-low band, we would have no bits left for use in encoding
the high-low band, and we would end up throwing away information necessary for the
reconstruction. ¢

The issue of energy compaction becomes a very important factor in reconstruction
quality. Filters that allow for more energy compaction permit the allocation of bits to a
smaller number of subbands. This in turn results in a better reconstruction.

The coding schemes used in this example were DPCM and scalar quantization, the
techniques generally preferred in subband coding. The advantage provided by subband coding
is readily apparent if we compare the result shown in Figure 14.33 to results in the previous
chapters where we usead either DPCM or scalar quantization without prior decomposition.

It would appear that the subband approach lends itself naturally to vector quantization.
After decomposing an image into subbands, we could design separate codebooks for each
subband to reflect the characteristics of that particular subband. The only problem with this
idea is that the low-low subband generally requires a large number of bits per pixel. As
we mentioned in Chapter 10, it is generally not feasible to operate the nonstructured vector
quantizers at high rates. Therefore, when vector quantizers are used, they are generally

470 14 SUBBAND CODING

used only for encoding the higher frequency bands. This may change as vector quantization
algorithms that operate at higher rates are developed.

14.13 Summary

In this chapter we introduced another approach to the decomposition of signals. In subband
coding we decompose the source output into components. Each of these components can
then be encoded using one of the techniques described in the previous chapters. The general
subband encoding procedure can be summarized as follows:

B Select a set of filters for decomposing the source. We have provided a number of
filters in this chapter. Many more filters can be obtained from the published literature
{we give some references below).

W Using the filters, obtain the subband signals {y, ,}:

N1
Yeon = Z By iXni (14.119)

i=0
where {h, ,} are the coefficients of the kth filter.
@ Decimate the output of the filters.

B Encode the decimated output.

The decoding procedure is the inverse of the encoding procedure. When encoding images
the filtering and decimation operations have to be performed twice, once along the rows and
once along the columns. Care should be taken to avoid problems at edges, as described in
Section 14.12.

Further Reading

1. Handbook for Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser [162],
is an excellent source of information about digital filters.

2. Multirate Systems and Filter Banks, by P.P. Vaidyanathan [200], provides detailed
information on QMF filters, as well as the relationship between wavelets and filter
banks and much more.

3. The topic of subband coding is also covered in Digital Coding of Waveforms, by
N.S. Jayant and P. Noll [123].

4. The MPEG-1 audio coding algorithm is described in “ISO-MPEG-1 Audio: A
Generic Standard for Coding of High-Quality Digital Audio,” by K. Brandenburg and
G. Stoll [28], in the October 1994 issue of the Journal of the Audio Engineering Society.

5. A review of the rate distortion method of bit allocation is provided in “Rate Distortion
Methods for Image and Video Compression,” by A. Ortega and K. Ramachandran, in
the November 1998 issue of JEEE Signal Processing Magazine [169].

14.14 Projects and Problems 471

14.

4.

14 Projects and Problems

A linear shift invariant system has the following properties:

B If for a given input sequence {x,} the output of the system is the sequence {y,},
then if we delay the input sequence by k units to obtain the sequence {x,_,},
the corresponding output will be the sequence {y,} delayed by & units.

W If the output corresponding to the sequence {x{"} is {y("}, and the output
corresponding to the sequence {x?'} is {y{?}, then the output corresponding to
the sequence {ax(" +Bx@} is {ayV +By?}.

Use these two properties to show the convolution property given in Equation (14.18).

Let’s design a set of simple four-tap filters that satisfies the perfect reconstruction
condition.

(a) We begin with the low-pass filter. Assume that the impulse response of the filter
is given by {h, ,}¢=3. Further assume that

|hel =1h,| Vik.
Find a set of values for {4, ;} that satisfies Equation (14.91).
(b) Plot the magnitude of the transfer function H,(z).
(e} Using Equation (14.23), find the high-pass filter coefficients {hy}.
(d) Find the magnitude of the transfer function H,(z).
Given an input sequence
" . _l(—l)" n=0,1,2, ..
"o otherwise
(@) Find the output sequence y, if the filter impulse response is
b= ‘% n=0,1
" 0 otherwise.

(b) Find the output sequence w, if the impulse response of the filter is

Lz n=0
— 1 —_
h" = —75 n= 1
0 otherwise.

(e} Looking at the sequences y, and w,, what can you say about the sequence x,?
Given an input sequence

1 n=0,1,2,...

X, = .
0 otherwise

472 14 SUBBAND CODING

(a) Find the output sequence y, if the filter impulse response is

b= % n=20,1

0 otherwise.

(b) Find the output sequence w, if the impulse response of the filter is

% n=20
h,=3-+ n=1
0 otherwise.

(e} Looking at the sequences y, and w,, what can you say about the sequence x,?

5. Write a program to perform the analysis and downsampling operations and another to
perform the upsampling and synthesis operations for an image compression application.
The programs should read the filter parameters from a file. The synthesis program
should read the output of the analysis program and write out the reconstructed images.
The analysis program should also write out the subimages scaled so that they can be
displayed. Test your program using the Johnston eight-tap filter and the Sena image.

6. In this problem we look at some of the many ways we can encode the subimages
obtained after subsampling. Use the eight-tap Johnston filter to decompose the Sena
image into four subimages.

{a) Encode the low-low band using an adptive delta modulator (CFDM or CVSD).
Encode all other bands using a 1-bit scalar quantizer.

(b) Encode the low-low band using a 2-bit adaptive DPCM system. Encode the
low-high and high-low bands using a 1-bit scalar quantizer.

te) Encode the low-low band using a 3-bit adaptive DPCM system. Encode the
low-high and high-low band using a 0.5 bit/pixel vector quantizer.

(d) Compare the reconstructions obtained using the different schemes.

Wavelet-Based Compression

15.1 Overview

n this chapter we introduce the concept of wavelets and describe how to use
wavelet-based decompositions in compression schemes. We begin with an
introduction to wavelets and multiresolution analysis and then describe how
we can implement a wavelet decomposition using filters. We then examine
the implementations of several wavelet-based compression schemes.

15.2 Introduction

In the previous two chapters we looked at a number of ways to decompose a signal. In this
chapter we look at another approach to decompose a signal that has become increasingly
popular in recent years: the use of wavelets. Wavelets are being used in a number of different
applications. Depending on the application, different aspects of wavelets can be emphasized.
As our particular application is compression, we will emphasize those aspects of wavelets
that are important in the design of compression algorithms. You should be aware that there
is much more to wavelets than is presented in this chapter. At the end of the chapter we
suggest options if you want to delve more deeply into this subject.

The practical implementation of wavelet compression schemes is very similar to that
of subband coding schemes. As in the case of subband coding, we decompose the signal
(analysis) using filter banks. The outputs of the filter banks are downsampled, quantized,
and encoded. The decoder decodes the coded representations, upsamples, and recomposes
the signal using a synthesis filter bank.

In the next several sections we will briefly examine the construction of wavelets and
describe how we can obtain a decomposition of a signal using multiresolution analysis. We
will then describe some of the currently popular schemes for image compression. If you are

474 15 WAVELET-BASED COMPRESSION

primarily interested at this time in implementation of wavelet-based compression schemes,
you should skip the next few sections and go directly to Section 15.5.

In the last two chapters we have described several ways of decomposing signals. Why do
we need another one? To answer this question, let’s begin with our standard tool for analysis,
the Fourier transform. Given a function f(¢), we can find the Fourier transform F(w) as

Flo) = ﬁ m f(n)e™ .

Integration is an averaging operation; therefore, the analysis we obtain, using the Fourier
transform, is in some sense an “average” analysis, where the averaging interval is all of
time. Thus, by looking at a particular Fourier transform, we can say, for example, that there
is a large component of frequency 10kHz in a signal, but we cannot tell when in time this
component occurred. Another way of saying this is that Fourier analysis provides excellent
localization in frequency and none in time. The converse is true for the time function f(1),
which provides exact information about the value of the function at each instant of time
but does not directly provide spectral information. It should be noted that both f(?) and
F(w) represent the same function, and all the information is present in each representation.
However, each representation makes different kinds of information easily accessible.

If we have a very nonstationary signal, like the one shown in Figure 15.1, we would
like to know not only the frequency components but when in time the particular frequency
components occurred. One way to obtain this information is via the short-term Fourier
transform (STFT). With the STFT, we break the time signal f(¢) into pieces of length T and
apply Fourier analysis to each piece. This way we can say, for example, that a component at
10kHz occurred in the third piece—that‘is, between time 27 and time 37. Thus, we obtain
an analysis that is a function of both time and frequency. If we simply chopped the function
into pieces, we could get distortion in the form of boundary effects (see Problem 1). In order
to reduce the boundary effects, we window each piece before we take the Fourier transform.
If the window shape is given by g(r), the STFT is formally given by

Flw,7) = /wf(t)g*(z—ﬂr)e"“’dt. (15.1)

If the window function g(¢) is a Gaussian, the STFT is called the Gabor transform.

ot

//' 1) | N

FIGURE 15.1 A nonstationary signal.

15.2 Introduction 475

The problem with the STFT is the fixed window size. Consider Figure 15.1. In order to
obtain the low-pass component at the beginning of the function, the window size should be
at least #, so that the window will contain at least one cycle of the low-frequency component.
However, a window size of t, or greater means that we will not be able to accurately localize
the high-frequency spurt. A large window in the time domain corresponds to a narrow filter
in the frequency domain, which is what we want for the low-frequency components—and
what we do not want for the high-frequency components. This dilemma is formalized in
the uncertainty principle, which states that for a given window g(¢), the product of the time
spread o2 and the frequency spread o2 is lower bounded by /1/2, where

g [rleldr
C [lg@dr
- fu)2|G((n)|2dw

(15.2)

" fIG)de 153

Thus, if we wish to have finer resolution in time, that is, reduce o7, we end up with an
increase in o2, or a lower resolution in the frequency domain. How do we get around this
problem?

Let’s take a look at the discrete STFT in terms of basis expansion, and for the moment,
let’s look at just one interval:

F(m,0) = f_ : f(D)g* (e~ ™' dt. (15.4)

The basis functions are g(¢), g(t)e/*', g(t)e’**’, and so on. The first three basis functions
are shown in Figure 15.2. We can see that we have a window with constant size, and
within this window, we have sinusoids with an increasing number of cycles. Let’s conjure
up a different set of functions in which the number of cycles is constant, but the size of
the window keeps changing, as shown in Figure 15.3. Notice that although the number of

N

FIGURE 15. 2 The first three STFT basis functions for the first time interval.

FIGURE 15.3 Three wavelet basis functions.

476 15 WAVELET-BASED COMPRESSION

cycles of the sinusoid in each window is the same, as the size of the window gets smaller,
these cycles occur in a smaller time interval; that is, the frequency of the sinusoid increases.
Furthermore, the lower frequency functions cover a longer time interval, while the higher
frequency functions cover a shorter time interval, thus avoiding the problem that we had
with the STFT. If we can write our function in terms of these functions and their translates,
we have a representation that gives us time and frequency localization and can provide high
frequency resolution at low frequencies (longer time window) and high time resolution at
high frequencies (shorter time window). This, crudely speaking, is the basic idea behind
wavelets.

In the following section we will formalize the concept of wavelets. Then we will discuss
how to get from a wavelet basis set to an implementation. If you wish to move directly to
implementation issues, you should skip to Section 15.5.

15.3 Wavelets

In the example at the end of the previous section, we started out with a single function. All
other functions were obtained by changing the size of the function or scaling and translating
this single function. This function is called the mother wavelet. Mathematically, we can
scale a function f(¢) by replacing ¢ with t/a, where the parameter a governs the amount of
scaling. For example, consider the function

cos(mr) —-l1<r<l|

ﬂ0=[

0 otherwise.

We have plotted this function in Figure 15.4. To scale this function by 0.5, we replace ¢ by
t/0.5:

!

f(—t—) _ cos(m 55 —15&51
0 otherwise

0 otherwise.

We have plotted the scaled function in Figure 15.5. If we define the norm of a function f(r)
by

IO = [F@ar
scaling obviously changes the norm of the function: -
t 2 < st
QN =[r Qe

a[_: fA(x)dx

Il

15.3 Wavelets 477

0.5

) 0

-0.5 -

|
(S}
|
—
w
|
—
]
=)
)]
o
=]
(]
—
v
()

FIGURE 15.4 A function f{(f).

1.5
1_.
0.5 -
ft10.5) 0
0.5
_l—
-1.5 T T | T T T
2 -15 -1 -05 0 05 15 2

FIGURE 15.5 The function f{ ;).

478 15 WAVELET-BASED COMPRESSION

where we have used the substitution x = t/a. Thus,

lr (O =atsor.

If we want the scaled function to have the same norm as the original function, we need to
naultiply it by 1/./a.

Mathematically, we can represent the translation of a function to the right or left by an
amount b by replacing ¢ by r — b or t+ b. For example, if we want to translate the scaled
function shewn in Figure 15.5 by one, we have

f<t—l) _ [cos(21‘r(r—l)) —i1<t-1<}

0.5 0 otherwise

_Jeos(2m(t—1)) % <t< %
) otherwise.

The scaled and translated function is shown in Figure 15.6. Thus, given a mother wavelet
Y(?), the remaining functions are obtained as

st =20 (2) (15.9

a

with Fourier transforms
W(w) = F[d(1)]
Y, () = FY, ()] (15.6)

1.5

1 -

0.5+

flt-1)/0.5) 0

-0.5 1

-1 -

-15 T T T T T 1 T
2 -15 -1 =05 0 05 1 15 2

FIGURE 15. 6 A scaled and transiated function.

15.3 Wavelets 479

Our expansion using coefficients with respect to these functions is obtained from the
inner product of f(¢) with the wavelet functions:

War = Wau (0 SO) = [, 01 (15.7)

We can recover the function f(7) from the w, , by

dadb

1 0 00
10=z[[werbos®=3 (15.8
where
o 2
c=| "p—f:’ldw. (15.9)
0

For integral (15.8) to exist, we need C to be finite. For C,, to be finite, we need ¥(0) = 0.
Otherwise, we have a singularity in the integrand of (15.9). Note that W(0) is the average
value of {i(¢); therefore, a requirement on the mother wavelet is that it have zero mean. The
condition that C,, be finite is often called the admissibility condition. We would also like the
wavelets to have finite energy; that is, we want the wavelets to belong to the vector space
L, (see Example 12.3.1). Using Parseval’s relationship, we can write this requirement as

f_: |W(w)|* do < .

For this to happen, |¥(w)|? has to decay as w goes to infinity. These requirements mean that
the energy in ¥(w) is concentrated in a narrow frequency band, which gives the wavelet its
frequency localization capability.

If a and b are continuous, then w, , is called the continuous wavelet transform (CWT).
Just as with other transforms, we will be more interested in the discrete version of this
transform. We first obtain a series representation where the basis functions are continuous
functions of time with discrete scaling and translating parameters a and b. The discrete
versions of the scaling and translating parameters have to be related to each other because
if the scale is such that the basis functions are narrow, the translation step should be
correspondingly small and vice versa. There are a number of ways we can choose these
parameters. The most popular approach is to select a and b according to

a=ay", b =nbya," (15.10)

where m and n are integers, a, is selected to be 2, and b, has a value of 1. This gives us
the wavelet set

U (1) = ag"*Y(alt — nby), mneZ. (15.11)
For ay, =2 and b, = 1, we have

Yo (1) = 272271 =). (15.12)

480 15 WAVELET-BASED COMPRESSION

(Note that these are the most commonly used choices, but they are not the only choices.) If
this set is complete, then {{,, ,(1)} are called affine wavelets. The wavelet coefficients are
given by

Wy = () 8,,(0) (15.13)
ar’? f F(OW(alt — nby)dt. (15.14)

i

The function f(t) can be reconstructed from the wavelet coefficients by

f(t)zzzwm.nwm.n(r)' (]5]5)

m

Wavelets come in many shapes. We will look at some of the more popular ones later in
this chapter. One of the simplest wavelets is the Haar wavelet, which we will use to explore
the various aspects of wavelets. The Haar wavelet is given by

0<t

=
<t

— 19—

oipy=]" 0='< (15.16)
-1 5 <
By translating and scaling this mother wavelet, we can synthesize a variety of functions.
This version of the transform, where f(t) is a continuous function while the transform
consists of discrete values, is a wavelet series analogous to the Fourier series. It is also
called the discrete time wavelet transform (DTWT). We have moved from the continuous
wavelet transform, where both the time function f(¢) and its transform w, , were continuous
functions of their arguments, to the wavelet series, where the time function is continuous
but the time-scale wavelet representation is discrete. Given that in data compression we
are generally dealing with sampled functions that are discrete in time, we would like both
the time and frequency representations to be discrete. This is called the discrete wavelet
transform (DWT). However, before we get to that, let’s look into one additional concept—
multiresolution analysis.

15.4 Multiresclution Analysis and the Scaling
Function

The idea behind multiresolution analysis is fairly simple. Let’s define a function ¢(¢) that
we call a scaling function. We will later see that the scaling function is closely related to
the mother wavelet. By taking linear combinations of the scaling function and its translates
we can generate a large number of functions

£ty = acd(1 =). (15.17)

The scaling function has the property that a function that can be represented by the scaling
function can also be represented by the dilated versions of the scaling function.

15.4 Multiresolution Analysis and the Scaling Function 481

For example, one of the simplest scaling functions is the Haar scaling function:

I 0<r<1
0 otherwise.

d)(t):[(15.18)
Then f(r) can be any piecewise continuous function that is constant in the interval [k, k+1)
for all k.

Let’s define

() =d(t—k). (15.19)
The set of all functions that can be obtained using a linear combination of the set {d, (1)}
[=" a,d, (1) (15.20)
k

is called the span of the set {d,(r)}, or Span{d,(r)}. If we now add all functions that
are limits of sequences of functions in Span{d, (1)}, this is referred to as the closure of
Span{d, (1)} and denoted by Span{d,(7)}. Let’s call this set Vo

If we want to generate functions at a higher resolution, say, functions that are required
to be constant over only half a unit interval, we can use a dilated version of the “mother”
scaling function. In fact, we can obtain scaling functions at different resolutions in a manner
similar to the procedure used for wavelets:

b (1) =2720(2 1 — k). (15.21)

The indexing scheme is the same as that used for wavelets, with the first index referring
to the resolution while the second index denotes the translation. For the Haar example,

V2 0<t< %
0 otherwise.

b1 () = (15.22)

We can use translates of &, o(f) to represent all functions that are constant over intervals
[k/2, (k+1)/2) for all k. Notice that in general any function that can be represented by the
translates of &(¢) can also be represented by a linear combination of translates of b, ().
The converse, however, is not true. Defining g

V) =Span{d, (1)} (15.23)

we can see that V, C V,. Similarly, we can show that V, C V,, and so on.

Example 15.4.1:

Consider the function shown in Figure 15.7. We can approximate this function using trans-
lates of the Haar scaling function ¢(r). The approximation is shown in Figure 15.8a. If we
call this approximation d)}m(t), then

‘b(fo)(f) =) Coudi(1) (15.24)
k

482 15 WAVELET-BASED COMPRESSION

fv RN

FIGURE 15.7 A sample function.

__‘—_'__J ' |

(2)

I
M '

(b)

o7'(0)
fJ;ﬂLL& o
~— -

t

©)

FIGURE 15. 8 Approximations of the function shown Figure 15.7.

15.4 Multiresolution Analysis and the Scaling Function 483

where

k+1

o= fndi(ndr (15.25)

We can obtain a more refined approximation, or an approximation at a higher resolution,

(1), shown in Figure 15.8b. if we use the set {, ,(1)}:

d)}‘l)(’)zzcl.kd)l,k(f) (15.26)

Notice that we need twice as many coefficients at this resolution compared to the previous
resolution. The coefficients at the two resolutions are related by

1
Cop = —=
0.k \/i

Continuing in this manner (Figure 15.8¢), we can get higher and higher resolution approxi-
mations of f(t) with

(€2 €1 opsr)- (15.27)

6" (1) =3 ¢, (1). (15.28)
k

Recall that, according to the Nyquist rule, if the highest frequency component of a signal
is at f, Hz, we need 2f,, samples per second to accurately represent it. Therefore, we could
obtain an accurate representation of f(r) using the set of translates {¢; ()}, where 27/ < :};

As

I

"/.x:zf/lfk?'f(f)dh (15.29)

by the mean value theorem of calculus, c;, is equal to a sample value of f(r) in the interval
[k27/, (k+1)27/). Therefore. the function d)?’(r) would represent more than 2f, samples
per second of f(1). ¢

We said earlier that a scaling function has the property that any function that can be
represented exactly by an expansion at some resolution j can also be represented by dilations
of the scaling function at resolution j+ 1. In particular, this means that the scaling function
itself can be represented by its dilations at a higher resolution:

d>(t)=2hkd>|,k(t)- (15.30)
k

Substituting &, (1) = V2d(21 — k), we obtain the multiresolution analysis (MRA) equation:

(1) =3 V221 — k). (15.31)
k

This equation will be of great importance to us when we begin looking at ways of imple-
menting the wavelet transform.

484 15 WAVELET-BASED COMPRESSION

Example 15.4.2:
Consider the Haar scaling function. Picking

1
ho:hl:ﬁ

and
h,=0 for k > 1

satisfies the recursion equation. ¢

Example 15.4.3:

Consider the triangle scaling function shown in Figure 15.9. For this function

1 | 1
hy=——=, h=—1, h=—=
S AV, B Wi
satisfies the recursion equation.
FIGURE 15.9 Triangular scaling function. ¢

While both the Haar scaling function and the triangle scaling functions are valid scaling
functions, there is an important difference between the two. The Haar function is orthogonal
to its translates; that is,

/ d(Nb(r—m)drt=3,,.

This is obviously not true of the triangle function. In this chapter we will be principally
concerned with scaling functions that are orthogonal because they give rise to orthonormal
transforms that, as we have previously seen, are very useful in compression.

How about the Haar wavelet? Can it be used as a scaling function? Some reflection
will show that we cannot obtain the Haar wavelet from a linear combination of its dilated
versions.

So, where do wavelets come into the picture? Let’s continue with our example using the
Haar scaling function. Let us assume for the moment that there is a function g(¢) that can
be exactly represented by dp;”(t); that is, g(¢) is a function in the set V,. We can decompose

15.4 Multiresolution Analysis and the Scaling Function 485

&Y (1) into the sum of a lower-resolution version of itself, namely, ¢ (1), and the difference
&L (1) — &P (1). Let’s examine this difference over an arbitrary unit interval [k, k + 1):

-2 k<t<k+!
Wy — O (s) = €o.k ‘/_ 1.2k = 3 15.32
b5 (1)=& () I%,k"ﬁcl,qu k+1<t<k+1. ()
Substituting for ¢, , from (15.27), we obtain
B - 40 () = | BT B kSi<kts (15.33)
] 8 %cuk—%cm,ﬁ] k+%§t<k+1.)
Defining
1 1
doy = —TQ 2wt =0
8 2 . \/5 2
over the arbitrary interval [k, k + 1),
d’;])(f)“b,(,.o)(f) = dy Yo 4 (1) (15.34)
where
1 k<t<k+i
Yo (1) = s (15.35)

-1 k+i<t<k+l.

But this is simply the kth translate of the Haar wavelet. Thus, for this particular case the
function can be represented as the sum of a scaling function and a wavelet at the same
resolution:

¢L”(’) = Zco.kd)().k(t)+Zd0.k¢0.k(t)' (15.36)
X k

In fact, we can show that this decomposition is not limited to this particular example.
A function in V| can be decomposed into a function in Vy—that is, a function that is a
linear combination of the scaling function at resolution 0, and a function that is a linear
combination of translates of a mother wavelet. Denoting the set of functions that can be
obtained by a linear combination of the translates of the mother wavelet as W,,, we can write
this symbolically as

V=V, @ W,. (15.37)

In other words, any function in V| can be represented using functions in V,, and W,,.

Obviously, once a scaling function is selected, the choice of the wavelet function cannot
be arbitrary. The wavelet that generates the set W, and the scaling function that generates
the sets V|, and V| are intrinsically related. In fact, from (15.37), W, C V,, and therefore any
function in W, can be represented by a linear combination of {¢, ;}. In particular, we can
write the mother wavelet {(¢) as

‘I’(’):Zwkd)l.k(’) (15.38)
P

486 15 WAVELET-BASED COMPRESSION

or

() = w V202 — k). (15.39)

This is the counterpart of the multiresolution analysis equation for the wavelet function and
will be of primary importance in the implementation of the decomposition.

All of this development has been for a function in V,. What if the function can only
be accurately represented at resolution j+ 1? If we define W, as the closure of the span of
U, ,(?), we can show that

V. =V,eW, (15.40)
But, as j is arbitrary,
V=V_ &W._ (15.41)
and
Vj+| IV]-_‘I@WI-_IEBWJ-‘ “542)
Continuing in this manner, we can see that for any £ < j
Voa=V,oW, oW, & oW, (15.43)

In other words, if we have a function that belongs to V,; (i.e.. that can be exactly represented
by the scaling function at resolution j+ 1), we can decompose it into a sum of functions
starting with a lower-resolution approximation followed by a sequence of functions generated
by dilations of the wavelet that represent the leftover details. This is very much like what
we did in subband coding. A major difference is that, while the subband decomposition
is in terms of sines and cosines, the decomposition in this case can use a variety of
scaling functions and wavelets. Thus, we can adapt the decomposition to the signal being

decomposed by selecting the scaling function and wavelet.

15.5 Implementation Using Filters

One of the most popular approaches to implementing the decomposition discussed in the

previous section is using a hierarchical filter structure similar to the one used in subband

coding. In this section we will look at how to obtain the structure and the filter coefficients.
We start with the MRA equation

(1) =3 h V2021 k). (15.44)
k
Substituting 7 = 2/t — m, we obtain the equation for an arbitrary dilation and translation:
&2t —m) = Y h V2622t —m) —k) (15.45)
k
= th\/id)(l”lr—Zm——k) {15.46)
k

= Y 2, V202 =) (15.47)
!

